{"title":"Wiener filter unifies Hilbert and Zernike phase plates in electron microscopy.","authors":"Kuniaki Nagayama","doi":"10.1007/s12551-025-01272-3","DOIUrl":null,"url":null,"abstract":"<p><p>We report on two key discoveries resulting from the combination of the Hilbert phase plate (HPP) and the Wiener filter: firstly, the resolution of the HPP's mixed image problem through a one-step experiment, and secondly, the unification of the Zernike phase plate (ZPP) and the HPP. When the phase of the HPP is reduced to less than π, it produces a mixed image comprising both the normal and the differential images. The HPPU (left-right unified HPP), proposed to address this issue, required a two-step experimental process. However, during our efforts to resolve the mixed image problem using either the left or right HPP, we discovered that the Wiener filtering process not only addresses this issue but also facilitates the unification of the ZPP and HPP. We will discuss the theoretical development behind these discoveries and their verification through simulations of three phase contrast methods: the Scherzer, ZPP, and HPP methods.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 1","pages":"185-198"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01272-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We report on two key discoveries resulting from the combination of the Hilbert phase plate (HPP) and the Wiener filter: firstly, the resolution of the HPP's mixed image problem through a one-step experiment, and secondly, the unification of the Zernike phase plate (ZPP) and the HPP. When the phase of the HPP is reduced to less than π, it produces a mixed image comprising both the normal and the differential images. The HPPU (left-right unified HPP), proposed to address this issue, required a two-step experimental process. However, during our efforts to resolve the mixed image problem using either the left or right HPP, we discovered that the Wiener filtering process not only addresses this issue but also facilitates the unification of the ZPP and HPP. We will discuss the theoretical development behind these discoveries and their verification through simulations of three phase contrast methods: the Scherzer, ZPP, and HPP methods.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation