{"title":"Ionic liquids as stabilisers of therapeutic protein formulations: a review of insulin and monoclonal antibodies.","authors":"Samuel Tien, Veysel Kayser","doi":"10.1007/s12551-024-01261-y","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic proteins such as insulin and monoclonal antibodies (mAbs) have become an essential part of the modern healthcare system and play a crucial role in the treatment of various diseases including cancer and autoimmune disorders. However, their long-term stability is a significant concern, affecting efficacy, shelf-life, and safety. Ionic liquids (ILs) have emerged as promising additives to enhance protein stability and address the aforementioned issues. Indeed, recent studies indicate that biocompatible ILs, particularly choline-based ILs, have significant potential to improve stability while preserving proteins' functionality. For instance, choline valinate has been shown to increase the melting temperature of insulin by almost 13 °C (Judy and Kishore Biochimie 207:20-32, 2023), while choline dihydrogen phosphate has increased the melting temperature of trastuzumab by over 21 °C (Reslan et al. Chem Commun 54:10622-10625, 2018). However, it is worth noting that the use of some ILs introduces a complex trade-off: while they can increase thermal stability, they may also promote protein unfolding, thereby reducing conformational stability. Moreover, selecting the most suitable IL and its optimal concentration is challenging, as different protein formulations may exhibit varying effects. This review provides a comprehensive overview of the existing literature on ILs as stabilisers for insulin and mAbs, documenting specific IL-protein combinations and conditions to identify potential future stabilising agents for biologics in general.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 1","pages":"89-101"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-024-01261-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic proteins such as insulin and monoclonal antibodies (mAbs) have become an essential part of the modern healthcare system and play a crucial role in the treatment of various diseases including cancer and autoimmune disorders. However, their long-term stability is a significant concern, affecting efficacy, shelf-life, and safety. Ionic liquids (ILs) have emerged as promising additives to enhance protein stability and address the aforementioned issues. Indeed, recent studies indicate that biocompatible ILs, particularly choline-based ILs, have significant potential to improve stability while preserving proteins' functionality. For instance, choline valinate has been shown to increase the melting temperature of insulin by almost 13 °C (Judy and Kishore Biochimie 207:20-32, 2023), while choline dihydrogen phosphate has increased the melting temperature of trastuzumab by over 21 °C (Reslan et al. Chem Commun 54:10622-10625, 2018). However, it is worth noting that the use of some ILs introduces a complex trade-off: while they can increase thermal stability, they may also promote protein unfolding, thereby reducing conformational stability. Moreover, selecting the most suitable IL and its optimal concentration is challenging, as different protein formulations may exhibit varying effects. This review provides a comprehensive overview of the existing literature on ILs as stabilisers for insulin and mAbs, documenting specific IL-protein combinations and conditions to identify potential future stabilising agents for biologics in general.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation