Allele and transcriptome mining in Gossypium hirsutum reveals variation in candidate genes at genetic loci affecting cotton fiber quality and textile flammability.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
Gregory N Thyssen, Wayne Smith, Marina Naoumkina, Ganesh Pinnika, Johnie N Jenkins, Jack C McCarty, Ping Li, Christopher B Florane, Don C Jones, David D Fang
{"title":"Allele and transcriptome mining in Gossypium hirsutum reveals variation in candidate genes at genetic loci affecting cotton fiber quality and textile flammability.","authors":"Gregory N Thyssen, Wayne Smith, Marina Naoumkina, Ganesh Pinnika, Johnie N Jenkins, Jack C McCarty, Ping Li, Christopher B Florane, Don C Jones, David D Fang","doi":"10.1186/s12870-025-06306-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Breeding valuable traits in crop plants requires identifying diverse alleles in the germplasm that are likely to affect desirable characteristics. The genetic diversity of historic cultivars of cotton is a reservoir of potentially important genes for crop improvement and genetic research. Diversity in the characteristics of harvested cotton fibers affects their suitability for end-use applications. Candidate loci and genes have been identified that affect the length, strength, and maturity of cotton fibers which affect the quality and value of the yarn, thread and textile. Natural genetic mechanisms in the plant may also affect the flammability of the produced textiles.</p><p><strong>Results: </strong>Here we show that a combination of allele mining and transcriptome analysis can identify candidate genes for cotton fiber traits including strength and perhaps flammability. We found novel DNA variants in fiber-expressed gene families in 132 newly sequenced cotton varieties and identified genes with genotype-specific RNA expression.</p><p><strong>Conclusions: </strong>Among these, we identified novel variation in DNA sequence and RNA expression in genes at major QTL qD04-ELO-WLIM (JGI-Gohir.D04G160000), qA13-MIC (Gohir.A13G157500), qA07-STR (Gohir.A07G191600), supported the candidacy of qD11-UHML-KRP6 (Gohir.D11G197900) and qD13-STR (Gohir.D13G17450), and identified an additional A03-WLIM transcription factor gene (Gohir.A03G182100) and several RNA expression variant candidates of potential flammability genes that may be useful for plant biologists and cotton breeders. Candidate genes for traits like flame resistance that are likely due to the combination of many small effect QTL can benefit from this multi-mining approach. We provide an annotated variant call format (vcf) file with variations at 24,996 loci that are predicted to affect 10,418 cotton fiber genes in the historic breeding germplasm.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"305"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06306-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Breeding valuable traits in crop plants requires identifying diverse alleles in the germplasm that are likely to affect desirable characteristics. The genetic diversity of historic cultivars of cotton is a reservoir of potentially important genes for crop improvement and genetic research. Diversity in the characteristics of harvested cotton fibers affects their suitability for end-use applications. Candidate loci and genes have been identified that affect the length, strength, and maturity of cotton fibers which affect the quality and value of the yarn, thread and textile. Natural genetic mechanisms in the plant may also affect the flammability of the produced textiles.

Results: Here we show that a combination of allele mining and transcriptome analysis can identify candidate genes for cotton fiber traits including strength and perhaps flammability. We found novel DNA variants in fiber-expressed gene families in 132 newly sequenced cotton varieties and identified genes with genotype-specific RNA expression.

Conclusions: Among these, we identified novel variation in DNA sequence and RNA expression in genes at major QTL qD04-ELO-WLIM (JGI-Gohir.D04G160000), qA13-MIC (Gohir.A13G157500), qA07-STR (Gohir.A07G191600), supported the candidacy of qD11-UHML-KRP6 (Gohir.D11G197900) and qD13-STR (Gohir.D13G17450), and identified an additional A03-WLIM transcription factor gene (Gohir.A03G182100) and several RNA expression variant candidates of potential flammability genes that may be useful for plant biologists and cotton breeders. Candidate genes for traits like flame resistance that are likely due to the combination of many small effect QTL can benefit from this multi-mining approach. We provide an annotated variant call format (vcf) file with variations at 24,996 loci that are predicted to affect 10,418 cotton fiber genes in the historic breeding germplasm.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信