Large-scale fermentation of Lactiplantibacillus pentosus 292 for the production of lactic acid and the storage strategy based on molasses as a preservative.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Xing Chen, Zhirong Wei, Ziqiao Feng, Yuhan Che, Xinyi Wang, Hao Long, Xiaoni Cai, Wei Ren, Zhenyu Xie
{"title":"Large-scale fermentation of Lactiplantibacillus pentosus 292 for the production of lactic acid and the storage strategy based on molasses as a preservative.","authors":"Xing Chen, Zhirong Wei, Ziqiao Feng, Yuhan Che, Xinyi Wang, Hao Long, Xiaoni Cai, Wei Ren, Zhenyu Xie","doi":"10.1186/s12866-025-03837-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lactiplantibacillus pentosus 292 is a lactic acid bacterium (LAB) with significant probiotic potential, but large-scale production is often limited by high production costs and preservation challenges. This study aimed to develop a cost-effective medium to enhance lactic acid production and establish a feasible preservation strategy to support the strain's large-scale application.</p><p><strong>Results: </strong>A low-cost medium containing glucose, yeast powder, K₂HPO₄, and Tween-80 was formulated, enabling Lactiplantibacillus pentosus 292 to achieve a lactic acid yield of 16.24 g/L, representing an 83.48% increase compared to the traditional MRS medium. Fermentation kinetics models for bacterial growth, substrate consumption, and product generation were established in a 200-L fermenter using the Logistic, Luedeking-Piret-like, and Luedeking-Piret models, and the R<sup>2</sup> values from the model equation were 0.9921 (OD<sub>600nm</sub>), 0.9942 (dry weight), 0.9506 (total protein), 0.8383 (lactic acid), 0.8898 (total sugar), and 0.8585 (reducing sugar), respectively, indicating that these models were suitable for accurately simulating the growth, nutrient production, and substrate consumption of L. pentosus 292. Additionally, a preservation strategy was developed by using 1-3% molasses as a preservative for the fermentation broth, and its efficacy was verified through temperature acceleration experiments.</p><p><strong>Conclusion: </strong>In this work, a cost-effective medium that significantly increased lactic acid yield and a preservative based on molasses as a strategy to extend the storage period of fermentation products were developed for large-scale production of L. pentosus 292, a member of probiotic LAB. Additionally, large-scale fermentation kinetics models were constructed, providing valuable technical insights for the large-scale production and application of this LAB, highlighting its significant potential for industrial applications.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"125"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03837-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lactiplantibacillus pentosus 292 is a lactic acid bacterium (LAB) with significant probiotic potential, but large-scale production is often limited by high production costs and preservation challenges. This study aimed to develop a cost-effective medium to enhance lactic acid production and establish a feasible preservation strategy to support the strain's large-scale application.

Results: A low-cost medium containing glucose, yeast powder, K₂HPO₄, and Tween-80 was formulated, enabling Lactiplantibacillus pentosus 292 to achieve a lactic acid yield of 16.24 g/L, representing an 83.48% increase compared to the traditional MRS medium. Fermentation kinetics models for bacterial growth, substrate consumption, and product generation were established in a 200-L fermenter using the Logistic, Luedeking-Piret-like, and Luedeking-Piret models, and the R2 values from the model equation were 0.9921 (OD600nm), 0.9942 (dry weight), 0.9506 (total protein), 0.8383 (lactic acid), 0.8898 (total sugar), and 0.8585 (reducing sugar), respectively, indicating that these models were suitable for accurately simulating the growth, nutrient production, and substrate consumption of L. pentosus 292. Additionally, a preservation strategy was developed by using 1-3% molasses as a preservative for the fermentation broth, and its efficacy was verified through temperature acceleration experiments.

Conclusion: In this work, a cost-effective medium that significantly increased lactic acid yield and a preservative based on molasses as a strategy to extend the storage period of fermentation products were developed for large-scale production of L. pentosus 292, a member of probiotic LAB. Additionally, large-scale fermentation kinetics models were constructed, providing valuable technical insights for the large-scale production and application of this LAB, highlighting its significant potential for industrial applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信