Aniline TFPA enhances camptothecin-induced anti-NSCLC by modulating oxidative stress and impairing autophagy.

IF 5.3 2区 医学 Q1 ONCOLOGY
Han-Lin Chou, I-Ling Lin, Yei-Tsung Chen, Wen-Tsan Chang, Ann Yu, Wei-Chun Chen, Chang-Yi Wu, Shean-Jaw Chiou, Chih-Wen Shu, Chien-Chih Chiu, Pei-Feng Liu
{"title":"Aniline TFPA enhances camptothecin-induced anti-NSCLC by modulating oxidative stress and impairing autophagy.","authors":"Han-Lin Chou, I-Ling Lin, Yei-Tsung Chen, Wen-Tsan Chang, Ann Yu, Wei-Chun Chen, Chang-Yi Wu, Shean-Jaw Chiou, Chih-Wen Shu, Chien-Chih Chiu, Pei-Feng Liu","doi":"10.1186/s12935-025-03657-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Camptothecin (CPT) derivatives are widely used in cancer therapies, but their efficacy can be attenuated by resistance mechanisms such as autophagy. We recently showed that the aniline compound 4-[4-(4-aminophenoxy)-2,3,5,6-tetrafluorophenoxy] aniline (TFPA) can potently increase CPT cytotoxicity against non-small cell lung cancer (NSCLC) cells. The purpose of this study was to evaluate whether TFPA improves CPT-based chemotherapy by modulating autophagy and other cell death pathways in NSCLC models.</p><p><strong>Methods: </strong>Two NSCLC cell lines, A549 and H1299, were tested. The synergism of CPT and TFPA was evaluated by trypan blue exclusion and colony formation assays. Annexin V staining was used for the detection of apoptosis, and autophagy was assessed by acridine orange staining and immunofluorescence. Flow cytometry-based dihydroethidium staining was used to assess oxidative stress. Changes in the expression of apoptosis-associated factors and autophagy-associated factors were determined by Western blot assays. The synergism of CPT and TFPA was validated using a zebrafish xenograft assay.</p><p><strong>Results: </strong>The accumulation of markers for lysosomal expansion (LAMP2) and degradation (cathepsin D) and markers for autophagosome formation (LC3B-II) suggested that blockage of autolysosome formation might impair autophagy in CPT-treated NSCLC cells and subsequently lead to autophagic cell death. Cotreatment with TFPA and CPT induced cell death by increasing the production of reactive oxygen species, which contributed to autophagic impairment and eventually apoptotic cell death in NSCLC cells.</p><p><strong>Conclusions: </strong>Our present work suggests that increased autophagic impairment induced by the combination of CPT and TFPA contributes to the apoptotic cell death of lung cancer cells.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"81"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03657-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Camptothecin (CPT) derivatives are widely used in cancer therapies, but their efficacy can be attenuated by resistance mechanisms such as autophagy. We recently showed that the aniline compound 4-[4-(4-aminophenoxy)-2,3,5,6-tetrafluorophenoxy] aniline (TFPA) can potently increase CPT cytotoxicity against non-small cell lung cancer (NSCLC) cells. The purpose of this study was to evaluate whether TFPA improves CPT-based chemotherapy by modulating autophagy and other cell death pathways in NSCLC models.

Methods: Two NSCLC cell lines, A549 and H1299, were tested. The synergism of CPT and TFPA was evaluated by trypan blue exclusion and colony formation assays. Annexin V staining was used for the detection of apoptosis, and autophagy was assessed by acridine orange staining and immunofluorescence. Flow cytometry-based dihydroethidium staining was used to assess oxidative stress. Changes in the expression of apoptosis-associated factors and autophagy-associated factors were determined by Western blot assays. The synergism of CPT and TFPA was validated using a zebrafish xenograft assay.

Results: The accumulation of markers for lysosomal expansion (LAMP2) and degradation (cathepsin D) and markers for autophagosome formation (LC3B-II) suggested that blockage of autolysosome formation might impair autophagy in CPT-treated NSCLC cells and subsequently lead to autophagic cell death. Cotreatment with TFPA and CPT induced cell death by increasing the production of reactive oxygen species, which contributed to autophagic impairment and eventually apoptotic cell death in NSCLC cells.

Conclusions: Our present work suggests that increased autophagic impairment induced by the combination of CPT and TFPA contributes to the apoptotic cell death of lung cancer cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.90
自引率
1.70%
发文量
360
审稿时长
1 months
期刊介绍: Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques. The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors. Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信