Imperiled Great Basin terminal lakes: Synthesizing ecological and hydrological science gaps and research needs for waterbird conservation.

IF 7.6 1区 生物学 Q1 BIOLOGY
BioScience Pub Date : 2024-12-13 eCollection Date: 2025-02-01 DOI:10.1093/biosci/biae126
Garth Herring, Ashley L Whipple, Cameron L Aldridge, Bryce A Pulver, Collin A Eagles-Smith, Rich D Inman, Elliott L Matchett, Adrian P Monroe, Elizabeth K Orning, Benjamin S Robb, Jessica E Shyvers, Bryan C Tarbox, Nathan D Van Schmidt, Cassandra D Smith, Matthew J Holloran, Cory T Overton, David R O'Leary, Michael L Casazza, Rebecca J Frus
{"title":"Imperiled Great Basin terminal lakes: Synthesizing ecological and hydrological science gaps and research needs for waterbird conservation.","authors":"Garth Herring, Ashley L Whipple, Cameron L Aldridge, Bryce A Pulver, Collin A Eagles-Smith, Rich D Inman, Elliott L Matchett, Adrian P Monroe, Elizabeth K Orning, Benjamin S Robb, Jessica E Shyvers, Bryan C Tarbox, Nathan D Van Schmidt, Cassandra D Smith, Matthew J Holloran, Cory T Overton, David R O'Leary, Michael L Casazza, Rebecca J Frus","doi":"10.1093/biosci/biae126","DOIUrl":null,"url":null,"abstract":"<p><p>Terminal lakes are declining globally because of human water demands, drought, and climate change. Through literature synthesis and feedback from the resource and conservation community, we review the state of research for terminal lakes in the Great Basin of the United States, which support millions of waterbirds annually, to prioritize ecological and hydrologic information needs. From an ecological perspective, research priorities include measuring the underlying differences in waterbird resource selection and distribution, migratory connectivity, abiotic factors that interact with prey densities to affect prey availability, and waterbird fitness or demography. Integrated links between water availability, water quality, and food webs are lacking in the literature. Scarce water availability data hinder the current knowledge of water extraction and evapotranspiration rates. Research that can address these priorities would help advance our understanding of how the Great Basin terminal lakes function as an interrelated system and support conservation efforts to reverse the decline of these critical lakes.</p>","PeriodicalId":9003,"journal":{"name":"BioScience","volume":"75 2","pages":"112-126"},"PeriodicalIF":7.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884798/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biosci/biae126","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Terminal lakes are declining globally because of human water demands, drought, and climate change. Through literature synthesis and feedback from the resource and conservation community, we review the state of research for terminal lakes in the Great Basin of the United States, which support millions of waterbirds annually, to prioritize ecological and hydrologic information needs. From an ecological perspective, research priorities include measuring the underlying differences in waterbird resource selection and distribution, migratory connectivity, abiotic factors that interact with prey densities to affect prey availability, and waterbird fitness or demography. Integrated links between water availability, water quality, and food webs are lacking in the literature. Scarce water availability data hinder the current knowledge of water extraction and evapotranspiration rates. Research that can address these priorities would help advance our understanding of how the Great Basin terminal lakes function as an interrelated system and support conservation efforts to reverse the decline of these critical lakes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BioScience
BioScience 生物-生物学
CiteScore
14.10
自引率
2.00%
发文量
109
审稿时长
3 months
期刊介绍: BioScience is a monthly journal that has been in publication since 1964. It provides readers with authoritative and current overviews of biological research. The journal is peer-reviewed and heavily cited, making it a reliable source for researchers, educators, and students. In addition to research articles, BioScience also covers topics such as biology education, public policy, history, and the fundamental principles of the biological sciences. This makes the content accessible to a wide range of readers. The journal includes professionally written feature articles that explore the latest advancements in biology. It also features discussions on professional issues, book reviews, news about the American Institute of Biological Sciences (AIBS), and columns on policy (Washington Watch) and education (Eye on Education).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信