Advancements in osteoblast sourcing, isolation, and characterization for dental tissue regeneration: a review.

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Venkata Suresh Venkataiah, Deepak Mehta, Mohammad Fareed, Mohmed Isaqali Karobari
{"title":"Advancements in osteoblast sourcing, isolation, and characterization for dental tissue regeneration: a review.","authors":"Venkata Suresh Venkataiah, Deepak Mehta, Mohammad Fareed, Mohmed Isaqali Karobari","doi":"10.1186/s12938-025-01363-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Primary osteoblasts are essential for bone formation and regeneration, making them pivotal in dental applications, including periodontal regeneration, ridge augmentation, and implant osseointegration. Sourced from various tissues like alveolar bone, calvarial bone, mandibular and maxillary bones, long bones, and bone marrow-derived stem cells (BMSCs), each type of osteoblast presents unique advantages and limitations related to yield, accessibility, and clinical relevance. Given these variables, selecting an appropriate source is crucial for experimental consistency and translational application in dentistry.</p><p><strong>Methods: </strong>This review synthesizes data from in vitro, animal, and clinical studies to provide a comprehensive overview of osteoblast sourcing, isolation, and characterization in dental research. Sources were reviewed based on yield, anatomical relevance, and accessibility, while isolation methods were compared to assess their impact on cell behavior and phenotype retention. The review evaluates methods such as enzymatic digestion, explant culture, and differentiation of BMSCs, alongside characterization techniques like morphological analysis, gene expression profiling, and mineralization assays.</p><p><strong>Results: </strong>The analysis shows that alveolar bone-derived osteoblasts offer high clinical relevance due to their anatomical similarity to oral structures but are limited by low yield and invasive collection. Calvarial and long bone osteoblasts provide higher yields, making them useful for material testing, though they lack biomechanical compatibility with oral environments. BMSCs offer a renewable source with significant regenerative potential but require precise differentiation protocols. In vitro studies contribute mechanistic insights, while animal models bridge the gap to clinical application, despite challenges in standardization and interspecies variability.</p><p><strong>Conclusion: </strong>This review highlights the importance of selecting appropriate osteoblast sources and methods for dental research to optimize outcomes in periodontal and implant-related therapies. The variability across study designs and experimental outcomes underscores the need for standardized protocols and targeted systematic reviews within specific research settings. These findings offer a framework for future osteoblast-based research and guide the effective translation of osteoblast therapies into clinical dental practice.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"31"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890725/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01363-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Primary osteoblasts are essential for bone formation and regeneration, making them pivotal in dental applications, including periodontal regeneration, ridge augmentation, and implant osseointegration. Sourced from various tissues like alveolar bone, calvarial bone, mandibular and maxillary bones, long bones, and bone marrow-derived stem cells (BMSCs), each type of osteoblast presents unique advantages and limitations related to yield, accessibility, and clinical relevance. Given these variables, selecting an appropriate source is crucial for experimental consistency and translational application in dentistry.

Methods: This review synthesizes data from in vitro, animal, and clinical studies to provide a comprehensive overview of osteoblast sourcing, isolation, and characterization in dental research. Sources were reviewed based on yield, anatomical relevance, and accessibility, while isolation methods were compared to assess their impact on cell behavior and phenotype retention. The review evaluates methods such as enzymatic digestion, explant culture, and differentiation of BMSCs, alongside characterization techniques like morphological analysis, gene expression profiling, and mineralization assays.

Results: The analysis shows that alveolar bone-derived osteoblasts offer high clinical relevance due to their anatomical similarity to oral structures but are limited by low yield and invasive collection. Calvarial and long bone osteoblasts provide higher yields, making them useful for material testing, though they lack biomechanical compatibility with oral environments. BMSCs offer a renewable source with significant regenerative potential but require precise differentiation protocols. In vitro studies contribute mechanistic insights, while animal models bridge the gap to clinical application, despite challenges in standardization and interspecies variability.

Conclusion: This review highlights the importance of selecting appropriate osteoblast sources and methods for dental research to optimize outcomes in periodontal and implant-related therapies. The variability across study designs and experimental outcomes underscores the need for standardized protocols and targeted systematic reviews within specific research settings. These findings offer a framework for future osteoblast-based research and guide the effective translation of osteoblast therapies into clinical dental practice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信