A modified formulation of Zoono GermFree24 antiseptic liquid has enhanced efficacy against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa.
IF 2.6 3区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Samuel J M Hale, Christian A Lux, Raymond Kim, Kristi Biswas, Brett Wagner Mackenzie, Richard G Douglas
{"title":"A modified formulation of <i>Zoono GermFree24</i> antiseptic liquid has enhanced efficacy against biofilms of <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i>.","authors":"Samuel J M Hale, Christian A Lux, Raymond Kim, Kristi Biswas, Brett Wagner Mackenzie, Richard G Douglas","doi":"10.1080/08927014.2025.2467078","DOIUrl":null,"url":null,"abstract":"<p><p><i>Zoono GermFree24</i> is a quaternary ammonium compound-based hand sanitiser. Its efficacy against planktonic bacteria is well established, but efficacy against biofilms has not been tested. We investigated the antibiofilm efficacy of <i>Zoono GermFree24</i> hand sanitiser and a modified formulation against biofilms of <i>Staphylococcus aureus</i> ATCC 6538 and <i>Pseudomonas aeruginosa</i> ATCC 27853 grown <i>in vitro</i> using the Centers for Disease Control (CDC) biofilm reactor and 96-pin lids. Biofilms were immersed in <i>Zoono GermFree24</i> or <i>Zoono</i> B22-1402A (modified formulation) for 5 min, 1 h, 6 h or overnight (22 ± 2 h). The antiseptic was neutralised and the bacteria remaining after treatment were cultured and quantified. <i>Zoono GermFree24</i> and <i>Zoono</i> B22-1402A caused time-dependent reductions in viable biofilms of both species with both methods of culture and testing, with more rapid biofilm eradication observed for <i>Zoono</i> B22-1402A. Biofilms grown on 96-pin lids were more quickly eradicated than those grown in the CDC biofilm reactor.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-9"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2025.2467078","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Zoono GermFree24 is a quaternary ammonium compound-based hand sanitiser. Its efficacy against planktonic bacteria is well established, but efficacy against biofilms has not been tested. We investigated the antibiofilm efficacy of Zoono GermFree24 hand sanitiser and a modified formulation against biofilms of Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 27853 grown in vitro using the Centers for Disease Control (CDC) biofilm reactor and 96-pin lids. Biofilms were immersed in Zoono GermFree24 or Zoono B22-1402A (modified formulation) for 5 min, 1 h, 6 h or overnight (22 ± 2 h). The antiseptic was neutralised and the bacteria remaining after treatment were cultured and quantified. Zoono GermFree24 and Zoono B22-1402A caused time-dependent reductions in viable biofilms of both species with both methods of culture and testing, with more rapid biofilm eradication observed for Zoono B22-1402A. Biofilms grown on 96-pin lids were more quickly eradicated than those grown in the CDC biofilm reactor.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.