Single-cell analyses reveal increased gene expression variability in human neurodevelopmental conditions.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2025-04-03 Epub Date: 2025-03-07 DOI:10.1016/j.ajhg.2025.02.011
Suraj Upadhya, Jenny A Klein, Anna Nathanson, Kristina M Holton, Lindy E Barrett
{"title":"Single-cell analyses reveal increased gene expression variability in human neurodevelopmental conditions.","authors":"Suraj Upadhya, Jenny A Klein, Anna Nathanson, Kristina M Holton, Lindy E Barrett","doi":"10.1016/j.ajhg.2025.02.011","DOIUrl":null,"url":null,"abstract":"<p><p>Interindividual variation in phenotypic penetrance and severity is found in many neurodevelopmental conditions, although the underlying mechanisms remain largely unresolved. Within individuals, homogeneous cell types (i.e., genetically identical and in similar environments) can differ in molecule abundance. Here, we investigate the hypothesis that neurodevelopmental conditions can drive increased variability in gene expression, not just differential gene expression. Leveraging independent single-cell and single-nucleus RNA sequencing datasets derived from human brain-relevant cell and tissue types, we identify a significant increase in gene expression variability driven by the autosomal aneuploidy trisomy 21 (T21) as well as autism-associated chromodomain helicase DNA binding protein 8 (CHD8) haploinsufficiency. Our analyses are consistent with a global and, in part, stochastic increase in variability, which is uncoupled from changes in transcript abundance. Highly variable genes tend to be cell-type specific with modest enrichment for repressive H3K27me3, while least variable genes are more likely to be constrained and associated with active histone marks. Our results indicate that human neurodevelopmental conditions can drive increased gene expression variability in brain cell types, with the potential to contribute to diverse phenotypic outcomes. These findings also provide a scaffold for understanding variability in disease, essential for deeper insights into genotype-phenotype relationships.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"876-891"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.02.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Interindividual variation in phenotypic penetrance and severity is found in many neurodevelopmental conditions, although the underlying mechanisms remain largely unresolved. Within individuals, homogeneous cell types (i.e., genetically identical and in similar environments) can differ in molecule abundance. Here, we investigate the hypothesis that neurodevelopmental conditions can drive increased variability in gene expression, not just differential gene expression. Leveraging independent single-cell and single-nucleus RNA sequencing datasets derived from human brain-relevant cell and tissue types, we identify a significant increase in gene expression variability driven by the autosomal aneuploidy trisomy 21 (T21) as well as autism-associated chromodomain helicase DNA binding protein 8 (CHD8) haploinsufficiency. Our analyses are consistent with a global and, in part, stochastic increase in variability, which is uncoupled from changes in transcript abundance. Highly variable genes tend to be cell-type specific with modest enrichment for repressive H3K27me3, while least variable genes are more likely to be constrained and associated with active histone marks. Our results indicate that human neurodevelopmental conditions can drive increased gene expression variability in brain cell types, with the potential to contribute to diverse phenotypic outcomes. These findings also provide a scaffold for understanding variability in disease, essential for deeper insights into genotype-phenotype relationships.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信