Modeling statin-induced myopathy with hiPSC-derived myocytes reveals that impaired proteostasis underlies the myotoxicity and is targetable for the prevention.
{"title":"Modeling statin-induced myopathy with hiPSC-derived myocytes reveals that impaired proteostasis underlies the myotoxicity and is targetable for the prevention.","authors":"Xiaolin Zhao, Liyang Ni, Miharu Kubo, Mariko Matsuto, Hidetoshi Sakurai, Makoto Shimizu, Yu Takahashi, Ryuichiro Sato, Yoshio Yamauchi","doi":"10.1152/ajpcell.00714.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Statins, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors, have been widely prescribed to lower circulating low-density lipoprotein cholesterol levels and reduce the risk of cardiovascular disease. Although statins are well tolerated, statin-associated muscle symptoms (SAMS) are the major adverse effect and cause statin intolerance. Therefore, understanding the molecular mechanisms of SAMS and developing effective strategies for its prevention are of significant clinical importance; however, both remain unclear. Here, we establish a model of statin-induced myopathy (SIM) with human induced pluripotent stem cell (hiPSC)-derived myocytes (iPSC-MCs) and investigate the effect of statins on protein homeostasis (proteostasis) that affects skeletal muscle wasting and myotoxicity. We show that treating hiPSC-MCs with statins induces atrophic phenotype and myotoxicity, establishing an hiPSC-based SIM model. We then examine whether statins impair the balance between protein synthesis and degradation. The results show that statins not only suppress protein synthesis but also promote protein degradation by upregulating the expression of the muscle-specific E3 ubiquitin ligase Atrogin-1 in a mevalonate pathway-dependent manner. Mechanistically, blocking the mevalonate pathway inactivates the protein kinase Akt, leading to the inhibition of mTOR complex 1 (mTORC1) but the activation of GSK3β and FOXO1. These changes explain the statin-induced impairment in proteostasis. Finally, we show that pharmacological blockage of FOXO1 prevents SIM in hiPSC-MCs, implicating FOXO1 as a key mediator of SIM. Taken together, this study suggests that the mevalonate pathway is critical for maintaining skeletal muscle proteostasis and identifies FOXO1 as a potential target for preventing SIM.<b>NEW & NOTEWORTHY</b> This work established a human induced pluripotent stem (iPS) cell-based model for statin-induced myopathy (SIM) and demonstrated that blocking the mevalonate pathway disrupts the balance between protein synthesis and degradation, leading to myopathy. Furthermore, the present study showed that pharmacological inhibition of the transcription factor FOXO1 prevents SIM in human iPS cell-derived myocytes, suggesting that FOXO1 is a key mediator of SIM and a potential target for its prevention.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1247-C1259"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00714.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Statins, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors, have been widely prescribed to lower circulating low-density lipoprotein cholesterol levels and reduce the risk of cardiovascular disease. Although statins are well tolerated, statin-associated muscle symptoms (SAMS) are the major adverse effect and cause statin intolerance. Therefore, understanding the molecular mechanisms of SAMS and developing effective strategies for its prevention are of significant clinical importance; however, both remain unclear. Here, we establish a model of statin-induced myopathy (SIM) with human induced pluripotent stem cell (hiPSC)-derived myocytes (iPSC-MCs) and investigate the effect of statins on protein homeostasis (proteostasis) that affects skeletal muscle wasting and myotoxicity. We show that treating hiPSC-MCs with statins induces atrophic phenotype and myotoxicity, establishing an hiPSC-based SIM model. We then examine whether statins impair the balance between protein synthesis and degradation. The results show that statins not only suppress protein synthesis but also promote protein degradation by upregulating the expression of the muscle-specific E3 ubiquitin ligase Atrogin-1 in a mevalonate pathway-dependent manner. Mechanistically, blocking the mevalonate pathway inactivates the protein kinase Akt, leading to the inhibition of mTOR complex 1 (mTORC1) but the activation of GSK3β and FOXO1. These changes explain the statin-induced impairment in proteostasis. Finally, we show that pharmacological blockage of FOXO1 prevents SIM in hiPSC-MCs, implicating FOXO1 as a key mediator of SIM. Taken together, this study suggests that the mevalonate pathway is critical for maintaining skeletal muscle proteostasis and identifies FOXO1 as a potential target for preventing SIM.NEW & NOTEWORTHY This work established a human induced pluripotent stem (iPS) cell-based model for statin-induced myopathy (SIM) and demonstrated that blocking the mevalonate pathway disrupts the balance between protein synthesis and degradation, leading to myopathy. Furthermore, the present study showed that pharmacological inhibition of the transcription factor FOXO1 prevents SIM in human iPS cell-derived myocytes, suggesting that FOXO1 is a key mediator of SIM and a potential target for its prevention.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.