Swathi Shivappa, K P Amritha, Siddharth Nayak, Harsha K Chandrashekar, Sachin Ashok Thorat, Arya Kaniyassery, Nisha Govender, Muthu Thiruvengadam, Annamalai Muthusamy
{"title":"Integration of physio-biochemical, biological and molecular approaches to improve heavy metal tolerance in plants.","authors":"Swathi Shivappa, K P Amritha, Siddharth Nayak, Harsha K Chandrashekar, Sachin Ashok Thorat, Arya Kaniyassery, Nisha Govender, Muthu Thiruvengadam, Annamalai Muthusamy","doi":"10.1007/s13205-025-04248-y","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal toxicity hinders plant growth and development by inducing oxidative stress, decreasing biomass, impairing photosynthesis, and potentially leading to plant death. The inherent defense mechanisms employed by plants, including metal sequestration into vacuoles, phytochelation, cell wall metal adsorption and an enhanced antioxidant system can be improved via various approaches to mitigate heavy metal toxicity. This review primarily outlines plants direct and indirect responses to HM stress and the tolerance mechanisms by which plants combat the toxic effects of metals and metalloids to understand the effective management of HMs and metalloids in the soil system. Furthermore, this review highlights measures to mitigate metal and metalloid toxicity and improve metal tolerance through various physio-biochemical, biological, and molecular approaches. This review also provides a comprehensive account of all the mitigative approaches by comparing physio-biochemical, biological and molecular approaches. Finally, we compared all the mitigative approaches used in monocotyledonous and dicotyledonous to increase their metal tolerance. Although many studies have compared monocot and dicot plants based on metal toxicity and tolerance effects, comparisons of these mitigative approaches have not been explored.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 4","pages":"76"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885775/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-025-04248-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal toxicity hinders plant growth and development by inducing oxidative stress, decreasing biomass, impairing photosynthesis, and potentially leading to plant death. The inherent defense mechanisms employed by plants, including metal sequestration into vacuoles, phytochelation, cell wall metal adsorption and an enhanced antioxidant system can be improved via various approaches to mitigate heavy metal toxicity. This review primarily outlines plants direct and indirect responses to HM stress and the tolerance mechanisms by which plants combat the toxic effects of metals and metalloids to understand the effective management of HMs and metalloids in the soil system. Furthermore, this review highlights measures to mitigate metal and metalloid toxicity and improve metal tolerance through various physio-biochemical, biological, and molecular approaches. This review also provides a comprehensive account of all the mitigative approaches by comparing physio-biochemical, biological and molecular approaches. Finally, we compared all the mitigative approaches used in monocotyledonous and dicotyledonous to increase their metal tolerance. Although many studies have compared monocot and dicot plants based on metal toxicity and tolerance effects, comparisons of these mitigative approaches have not been explored.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.