{"title":"Large-Scale, Reliable Fabrication of Indium Oxide Nanowire Transistors on Paper Using a Combination of High Throughput Solution Processing Techniques.","authors":"Mohammed Hadhi Pazhaya Puthanveettil, Jyoti Ranjan Pradhan, Sandeep Kumar Mondal, Subho Dasgupta","doi":"10.1002/smtd.202500235","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for electronic gadgets generates a large volume of electronic waste, resulting in significant environmental risks and health hazards. Therefore, it is essential to promote the use of recyclable materials for a sustainable future. Typically, the substrate of an electronic component comprises most of its material weight. Therefore, the use of biocompatible cellulose/paper as the substrate can be a game-changer for high-volume wearable and consumer electronics. However, papers limit the process temperature of thin film transistors (TFTs) to ≤100 °C; consequently, the only possible solution-based approach would be the use of high-quality, pre-synthesized semiconductor materials, such as oxide nanowires. However, the nanowires are difficult to process/ align using high throughput and scalable techniques. In this regard, it is shown that a combination of solution-processing methods can enable the fabrication of high-performance, large-scale indium oxide nanowire TFTs on paper, where the nanowires are dielectrophoretically-aligned, and electrolytic insulator and gate electrodes are inkjet-printed. The solution-processed TFTs demonstrate excellent device performance, an On/Off ratio >10<sup>7</sup>, an average linear mobility as high as 42 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>, low device-to-device variability, extreme tensile strain tolerance of 10%, and excellent environmental stability. Furthermore, the depletion-load type pseudo-CMOS inverters demonstrate a low dynamic power consumption of 35 nW.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500235"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500235","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The growing demand for electronic gadgets generates a large volume of electronic waste, resulting in significant environmental risks and health hazards. Therefore, it is essential to promote the use of recyclable materials for a sustainable future. Typically, the substrate of an electronic component comprises most of its material weight. Therefore, the use of biocompatible cellulose/paper as the substrate can be a game-changer for high-volume wearable and consumer electronics. However, papers limit the process temperature of thin film transistors (TFTs) to ≤100 °C; consequently, the only possible solution-based approach would be the use of high-quality, pre-synthesized semiconductor materials, such as oxide nanowires. However, the nanowires are difficult to process/ align using high throughput and scalable techniques. In this regard, it is shown that a combination of solution-processing methods can enable the fabrication of high-performance, large-scale indium oxide nanowire TFTs on paper, where the nanowires are dielectrophoretically-aligned, and electrolytic insulator and gate electrodes are inkjet-printed. The solution-processed TFTs demonstrate excellent device performance, an On/Off ratio >107, an average linear mobility as high as 42 cm2 V-1 s-1, low device-to-device variability, extreme tensile strain tolerance of 10%, and excellent environmental stability. Furthermore, the depletion-load type pseudo-CMOS inverters demonstrate a low dynamic power consumption of 35 nW.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.