Enhancing the Dispersibility and Stability of Graphene in Water Using Porphyrin-Based Compounds.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Katerina Anagnostou, Evangelos Sotiropoulos, Nikolaos Tzoganakis, Christos Polyzoidis, Konstantinos Rogdakis, Anna Katsari, Katerina Achilleos, Evitina Triantafyllou, Georgios Landrou, Emmanouil Nikoloudakis, Georgios Charalambidis, Athanassios G Coutsolelos, Emmanuel Kymakis
{"title":"Enhancing the Dispersibility and Stability of Graphene in Water Using Porphyrin-Based Compounds.","authors":"Katerina Anagnostou, Evangelos Sotiropoulos, Nikolaos Tzoganakis, Christos Polyzoidis, Konstantinos Rogdakis, Anna Katsari, Katerina Achilleos, Evitina Triantafyllou, Georgios Landrou, Emmanouil Nikoloudakis, Georgios Charalambidis, Athanassios G Coutsolelos, Emmanuel Kymakis","doi":"10.1002/smtd.202401431","DOIUrl":null,"url":null,"abstract":"<p><p>Although graphene's superior electrical, optoelectronic, thermal, and mechanical properties have been evident for 20 years now, its poor water dispersibility has hindered its incorporation in many types of applications and technologies. Strong examples of this are biomedical and environmental applications and devices that require non-toxic, biocompatible media and not toxic organic solvents like N-N'-Dimethylformamide, in which graphene is readily dispersible. In this work, we investigate a new way to prepare high-concentration and stable graphene dispersions in water by employing porphyrin-based compounds as stabilisers. To this end, electrochemically exfoliated graphene (EEG) and assess the potential of five porphyrins and metalloporphyrins are prepared to disperse EEG in water successfully. The dispersibility and stability of EEG in each porphyrin aqueous solution are evaluated by recording their UV-vis absorption spectra. Two of the synthesised compounds, namely sodium salt of 5,10,15,20-tetrakis(4-carboxyphenyl)-porphyrin or TCPP and sodium salt of [5,10,15,20-tetrakis(4-carboxyphenyl)-porphyrinato]tin(IV) or Sn-TCPP , are successful in stably dispersing EEG in water. The intermolecular interaction between the EEG flakes and [H<sub>2</sub>TCPP]Na<sub>4</sub> and [Sn(OH)<sub>2</sub>TCPP]Na<sub>4</sub> molecules are investigated via fluorescence emission spectroscopy. Finally, solid thin films of the EEG(TCPP) and EEG(Sn-TCPP) dispersions are prepared via spray-coating, and their optoelectronic properties and surface morphology are investigated.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401431"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401431","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although graphene's superior electrical, optoelectronic, thermal, and mechanical properties have been evident for 20 years now, its poor water dispersibility has hindered its incorporation in many types of applications and technologies. Strong examples of this are biomedical and environmental applications and devices that require non-toxic, biocompatible media and not toxic organic solvents like N-N'-Dimethylformamide, in which graphene is readily dispersible. In this work, we investigate a new way to prepare high-concentration and stable graphene dispersions in water by employing porphyrin-based compounds as stabilisers. To this end, electrochemically exfoliated graphene (EEG) and assess the potential of five porphyrins and metalloporphyrins are prepared to disperse EEG in water successfully. The dispersibility and stability of EEG in each porphyrin aqueous solution are evaluated by recording their UV-vis absorption spectra. Two of the synthesised compounds, namely sodium salt of 5,10,15,20-tetrakis(4-carboxyphenyl)-porphyrin or TCPP and sodium salt of [5,10,15,20-tetrakis(4-carboxyphenyl)-porphyrinato]tin(IV) or Sn-TCPP , are successful in stably dispersing EEG in water. The intermolecular interaction between the EEG flakes and [H2TCPP]Na4 and [Sn(OH)2TCPP]Na4 molecules are investigated via fluorescence emission spectroscopy. Finally, solid thin films of the EEG(TCPP) and EEG(Sn-TCPP) dispersions are prepared via spray-coating, and their optoelectronic properties and surface morphology are investigated.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信