Advancing Glass Engineering: Harnessing Focused Electron Beams for Direct Microstructuring.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mathias Holz, Martin Hofmann, Christoph Weigel, Steffen Strehle
{"title":"Advancing Glass Engineering: Harnessing Focused Electron Beams for Direct Microstructuring.","authors":"Mathias Holz, Martin Hofmann, Christoph Weigel, Steffen Strehle","doi":"10.1002/smtd.202401671","DOIUrl":null,"url":null,"abstract":"<p><p>A technological approach for direct glass structuring is presented by exploiting electron-beam-induced defect generation utilizing a conventional scanning electron microscope (SEM). The structuring process is assumed to be linked to electron-beam-induced ion migration and allows to create structures of several hundred nanometers in depth. It is demonstrated that the structuring can be realized in literally any SEM, which thus enables a comparatively simple implementation in support of a broad field of applications. The experiments are realized using electron energies of 5 to 15 keV in combination with different kinds of glasses, such as fused silica and ultra-low expansion glass, that are equipped with a charge dissipation top-layer. By controlling the beam trajectory at the surface and the electron beam parameters, freeform structuring, structure arrays, direct embedding of metal structures into the glass surface, and beam-defined three-level patterning are realized. The shown electron beam-based glass structuring extends therefore the current possibilities in a complementary manner, enabling further fabrication strategies and direct structuring even of fragile, 3D-structured surfaces.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401671"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401671","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A technological approach for direct glass structuring is presented by exploiting electron-beam-induced defect generation utilizing a conventional scanning electron microscope (SEM). The structuring process is assumed to be linked to electron-beam-induced ion migration and allows to create structures of several hundred nanometers in depth. It is demonstrated that the structuring can be realized in literally any SEM, which thus enables a comparatively simple implementation in support of a broad field of applications. The experiments are realized using electron energies of 5 to 15 keV in combination with different kinds of glasses, such as fused silica and ultra-low expansion glass, that are equipped with a charge dissipation top-layer. By controlling the beam trajectory at the surface and the electron beam parameters, freeform structuring, structure arrays, direct embedding of metal structures into the glass surface, and beam-defined three-level patterning are realized. The shown electron beam-based glass structuring extends therefore the current possibilities in a complementary manner, enabling further fabrication strategies and direct structuring even of fragile, 3D-structured surfaces.

推进玻璃工程:利用聚焦电子束进行直接微结构。
提出了一种利用传统扫描电子显微镜(SEM)利用电子束诱导缺陷产生的直接玻璃结构的技术方法。结构过程被认为与电子束诱导的离子迁移有关,并允许创建几百纳米深度的结构。结果表明,该结构可以在任何扫描电镜中实现,从而使实现相对简单,支持广泛的应用领域。实验采用电子能量为5 ~ 15kev的方法,与具有电荷耗散顶层的熔融石英和超低膨胀玻璃等不同类型的玻璃结合使用。通过控制电子束在玻璃表面的运动轨迹和电子束参数,实现了自由曲面结构、结构阵列、金属结构在玻璃表面的直接嵌入以及电子束定义的三能级图像化。所示的电子束玻璃结构以一种互补的方式扩展了当前的可能性,从而实现了进一步的制造策略和直接结构,甚至是脆弱的3d结构表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信