Pattern recognition, hemolymph protease-14 activation, and enhancement of lysozyme-mediated bacteria killing by soluble peptidoglycan recognition proteins in Manduca sexta.

IF 3.2 2区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chunxiang Hou, Yang Wang, Chao Xiong, Udeshika Kariyawasam, Tisheng Shan, Michael R Kanost, Haobo Jiang
{"title":"Pattern recognition, hemolymph protease-14 activation, and enhancement of lysozyme-mediated bacteria killing by soluble peptidoglycan recognition proteins in Manduca sexta.","authors":"Chunxiang Hou, Yang Wang, Chao Xiong, Udeshika Kariyawasam, Tisheng Shan, Michael R Kanost, Haobo Jiang","doi":"10.1016/j.ibmb.2025.104297","DOIUrl":null,"url":null,"abstract":"<p><p>Peptidoglycan recognition proteins (PGRPs) detect invading bacteria during insect immune responses, and some can damage bacterial cell walls. We previously produced M. sexta PGRPs 1-5, 12, and 13, and demonstrated that the PGRP repertoire in hemolymph preferentially detects meso-diaminopimelic acid-peptidoglycans (DAP-PGs). In this study, we found that adding DAP-PGs and PGRPs to larval hemolymph significantly enhanced prophenoloxidase activation beyond the sum of their individual effects. Lys-PG of Micrococcus luteus and PGRP4/5 also displayed the synergy, but Lys-PG of Staphyloccous aureus did not. Structural modeling and ligand docking supported the preferrential binding of DAP-PGs over Lys-PGs. DAP/Lys-PG, PGRP3s/3f/5/13N, and microbe binding protein activated hemolymph protease-14 (HP14), suggesting that these PGRPs initiate the serine protease system in the same way as PGRP1. Using fluorescein-labeled M. luteus peptidoglycan as a substrate, we detected increases in fluorescence signal caused by PGRP2, 4, 13N, 12e, and 3f, suggesting that these PGRPs have amidase activity for hydrolyzing peptidoglycan, which was enhanced by Zn<sup>2+</sup> and decreased by EDTA. Spatial locations of the catalytic residues, Zn<sup>2+</sup> ion, and scissile bond in the models of PGRP-peptidoglycan complexes explained some of the activity differences. PGRP2 and PGRP4 had the highest specific activity. Only PGRP4 (60 μg/ml) decreased Bacillus megaterium colony-forming units (CFU) compared to controls, whereas other PGRPs did not affect CFU numbers. A mixture of PGRP1-5 or 3s (2 μg/ml) and Manduca lysozyme (20 μg/ml) significantly reduced CFU compared to lysozyme alone, even for PGRPs without amidase activity. Scanning electron microscopy revealed that lysozyme caused structural damage to the bacterial cell walls, and when combined with PGRP2, this effect was enhanced. In summary, the soluble PGRPs preferentially recognize DAP-PGs, stimulate melanization via HP14, and enhance bacterial killing by lysozyme. Mechanisms for the amidase-independent bacterial killing by PGRPs and lysozyme require further exploration.</p>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":" ","pages":"104297"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.ibmb.2025.104297","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptidoglycan recognition proteins (PGRPs) detect invading bacteria during insect immune responses, and some can damage bacterial cell walls. We previously produced M. sexta PGRPs 1-5, 12, and 13, and demonstrated that the PGRP repertoire in hemolymph preferentially detects meso-diaminopimelic acid-peptidoglycans (DAP-PGs). In this study, we found that adding DAP-PGs and PGRPs to larval hemolymph significantly enhanced prophenoloxidase activation beyond the sum of their individual effects. Lys-PG of Micrococcus luteus and PGRP4/5 also displayed the synergy, but Lys-PG of Staphyloccous aureus did not. Structural modeling and ligand docking supported the preferrential binding of DAP-PGs over Lys-PGs. DAP/Lys-PG, PGRP3s/3f/5/13N, and microbe binding protein activated hemolymph protease-14 (HP14), suggesting that these PGRPs initiate the serine protease system in the same way as PGRP1. Using fluorescein-labeled M. luteus peptidoglycan as a substrate, we detected increases in fluorescence signal caused by PGRP2, 4, 13N, 12e, and 3f, suggesting that these PGRPs have amidase activity for hydrolyzing peptidoglycan, which was enhanced by Zn2+ and decreased by EDTA. Spatial locations of the catalytic residues, Zn2+ ion, and scissile bond in the models of PGRP-peptidoglycan complexes explained some of the activity differences. PGRP2 and PGRP4 had the highest specific activity. Only PGRP4 (60 μg/ml) decreased Bacillus megaterium colony-forming units (CFU) compared to controls, whereas other PGRPs did not affect CFU numbers. A mixture of PGRP1-5 or 3s (2 μg/ml) and Manduca lysozyme (20 μg/ml) significantly reduced CFU compared to lysozyme alone, even for PGRPs without amidase activity. Scanning electron microscopy revealed that lysozyme caused structural damage to the bacterial cell walls, and when combined with PGRP2, this effect was enhanced. In summary, the soluble PGRPs preferentially recognize DAP-PGs, stimulate melanization via HP14, and enhance bacterial killing by lysozyme. Mechanisms for the amidase-independent bacterial killing by PGRPs and lysozyme require further exploration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
5.30%
发文量
105
审稿时长
40 days
期刊介绍: This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信