{"title":"A comparative study of bulk and surface W-doped high-Ni cathode materials for lithium-ion batteries.","authors":"Gulzat Nuroldayeva, Tanay Umurzak, Aziza Kireyeva, Assylzat Aishova, Orynbassar Mukhan, Sung-Soo Kim, Zhumabay Bakenov, Nurzhan Umirov","doi":"10.1039/d4nr04691a","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the influence of tungsten (W) doping on the structural and electrochemical performance of high-nickel LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode materials, aiming to enhance lithium-ion battery high rate and long-term cycling stability. Tungsten was incorporated through two distinct approaches: bulk doping <i>via</i> a wet-chemical co-precipitation method and surface doping <i>via</i> solid-state processing during calcination. Comprehensive characterization, including X-ray diffraction, scanning electron microscopy, and micro-cavity electrode electrochemical measurements was conducted to elucidate the effect of W doping on the morphology, crystallinity, and lithium-ion transport properties. Results indicate that W doping enhances charge transfer kinetics and stabilizes the NCM811 microstructure, effectively reducing capacity fade. Notably, surface-doped samples (s-LNCMW) demonstrated superior cycling stability, with 92% capacity retention after 500 cycles, attributed to the formation of a protective Li<sub><i>x</i></sub>WO<sub><i>y</i></sub> layer. This study provides insights into the optimization of doped NCM cathodes, underscoring the potential of surface tungsten doping as a strategic approach for developing high-energy-density cathodes with improved cycle life for next-generation lithium-ion batteries.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04691a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the influence of tungsten (W) doping on the structural and electrochemical performance of high-nickel LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials, aiming to enhance lithium-ion battery high rate and long-term cycling stability. Tungsten was incorporated through two distinct approaches: bulk doping via a wet-chemical co-precipitation method and surface doping via solid-state processing during calcination. Comprehensive characterization, including X-ray diffraction, scanning electron microscopy, and micro-cavity electrode electrochemical measurements was conducted to elucidate the effect of W doping on the morphology, crystallinity, and lithium-ion transport properties. Results indicate that W doping enhances charge transfer kinetics and stabilizes the NCM811 microstructure, effectively reducing capacity fade. Notably, surface-doped samples (s-LNCMW) demonstrated superior cycling stability, with 92% capacity retention after 500 cycles, attributed to the formation of a protective LixWOy layer. This study provides insights into the optimization of doped NCM cathodes, underscoring the potential of surface tungsten doping as a strategic approach for developing high-energy-density cathodes with improved cycle life for next-generation lithium-ion batteries.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.