A comparative study of bulk and surface W-doped high-Ni cathode materials for lithium-ion batteries.

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-03-10 DOI:10.1039/d4nr04691a
Gulzat Nuroldayeva, Tanay Umurzak, Aziza Kireyeva, Assylzat Aishova, Orynbassar Mukhan, Sung-Soo Kim, Zhumabay Bakenov, Nurzhan Umirov
{"title":"A comparative study of bulk and surface W-doped high-Ni cathode materials for lithium-ion batteries.","authors":"Gulzat Nuroldayeva, Tanay Umurzak, Aziza Kireyeva, Assylzat Aishova, Orynbassar Mukhan, Sung-Soo Kim, Zhumabay Bakenov, Nurzhan Umirov","doi":"10.1039/d4nr04691a","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the influence of tungsten (W) doping on the structural and electrochemical performance of high-nickel LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode materials, aiming to enhance lithium-ion battery high rate and long-term cycling stability. Tungsten was incorporated through two distinct approaches: bulk doping <i>via</i> a wet-chemical co-precipitation method and surface doping <i>via</i> solid-state processing during calcination. Comprehensive characterization, including X-ray diffraction, scanning electron microscopy, and micro-cavity electrode electrochemical measurements was conducted to elucidate the effect of W doping on the morphology, crystallinity, and lithium-ion transport properties. Results indicate that W doping enhances charge transfer kinetics and stabilizes the NCM811 microstructure, effectively reducing capacity fade. Notably, surface-doped samples (s-LNCMW) demonstrated superior cycling stability, with 92% capacity retention after 500 cycles, attributed to the formation of a protective Li<sub><i>x</i></sub>WO<sub><i>y</i></sub> layer. This study provides insights into the optimization of doped NCM cathodes, underscoring the potential of surface tungsten doping as a strategic approach for developing high-energy-density cathodes with improved cycle life for next-generation lithium-ion batteries.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04691a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the influence of tungsten (W) doping on the structural and electrochemical performance of high-nickel LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials, aiming to enhance lithium-ion battery high rate and long-term cycling stability. Tungsten was incorporated through two distinct approaches: bulk doping via a wet-chemical co-precipitation method and surface doping via solid-state processing during calcination. Comprehensive characterization, including X-ray diffraction, scanning electron microscopy, and micro-cavity electrode electrochemical measurements was conducted to elucidate the effect of W doping on the morphology, crystallinity, and lithium-ion transport properties. Results indicate that W doping enhances charge transfer kinetics and stabilizes the NCM811 microstructure, effectively reducing capacity fade. Notably, surface-doped samples (s-LNCMW) demonstrated superior cycling stability, with 92% capacity retention after 500 cycles, attributed to the formation of a protective LixWOy layer. This study provides insights into the optimization of doped NCM cathodes, underscoring the potential of surface tungsten doping as a strategic approach for developing high-energy-density cathodes with improved cycle life for next-generation lithium-ion batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信