Development of a novel label-free NIR aptasensor based on triphenylmethane dyes for rapid and sensitive detection of copper ions.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Junhao Hu, Xinxin Li, Teck-Peng Loh, Lingli Bu
{"title":"Development of a novel label-free NIR aptasensor based on triphenylmethane dyes for rapid and sensitive detection of copper ions.","authors":"Junhao Hu, Xinxin Li, Teck-Peng Loh, Lingli Bu","doi":"10.1039/d5ay00156k","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal pollution, particularly from copper ions (Cu<sup>2+</sup>), poses a significant threat to both the ecological environment and human health. However, traditional copper ion analysis techniques are often hindered by the need for expensive equipment, labor-intensive sample preparation and skilled operation, which limits their effectiveness for field and real-time applications. In this work, we report a novel near-infrared aptamer sensor (NIRApt) that originates from the binding reaction between the DNA aptamer Apt<sub>Cu</sub> and the fluorescent small molecule crystal violet (CV), enabling rapid detection of Cu<sup>2+</sup> through the competitive effect of Cu<sup>2+</sup> with Apt<sub>Cu</sub>. This sensor shows a significant enhancement in NIR fluorescence after aptamer binding. NIRApt exhibits superior performance, requiring only three core components to achieve a fast response time and operational simplicity in less than a minute. The sensor shows high sensitivity with a detection limit as low as 61 nM, making it suitable for the detection of trace amounts of Cu<sup>2+</sup> in diverse samples. The efficacy of NIRApt has been validated through successful applications in real water samples, highlighting its promising potential for environmental monitoring.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ay00156k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal pollution, particularly from copper ions (Cu2+), poses a significant threat to both the ecological environment and human health. However, traditional copper ion analysis techniques are often hindered by the need for expensive equipment, labor-intensive sample preparation and skilled operation, which limits their effectiveness for field and real-time applications. In this work, we report a novel near-infrared aptamer sensor (NIRApt) that originates from the binding reaction between the DNA aptamer AptCu and the fluorescent small molecule crystal violet (CV), enabling rapid detection of Cu2+ through the competitive effect of Cu2+ with AptCu. This sensor shows a significant enhancement in NIR fluorescence after aptamer binding. NIRApt exhibits superior performance, requiring only three core components to achieve a fast response time and operational simplicity in less than a minute. The sensor shows high sensitivity with a detection limit as low as 61 nM, making it suitable for the detection of trace amounts of Cu2+ in diverse samples. The efficacy of NIRApt has been validated through successful applications in real water samples, highlighting its promising potential for environmental monitoring.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信