Engineering quantum carbon dots unveiling quantum wave entanglement wave function on enamel substrate: A relativistic in-vitro study.

IF 4.6 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Umer Daood, Fabian Davamani Amalraj, Kanwardeep Kaur, Ranjeet Ajit Bapat, Liang Lin Seow
{"title":"Engineering quantum carbon dots unveiling quantum wave entanglement wave function on enamel substrate: A relativistic in-vitro study.","authors":"Umer Daood, Fabian Davamani Amalraj, Kanwardeep Kaur, Ranjeet Ajit Bapat, Liang Lin Seow","doi":"10.1016/j.dental.2025.02.008","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>As artificial atoms, quantum dots are widely used in quantum information research since their individual energy levels may be precisely controlled using gate voltages. The purpose of the study was to modify carbon quantum dots (CQDs) and evaluate its effects on the structure, crystal orientation and mechanical properties of the enamel substrate along with antibacterial properties of CQDs.</p><p><strong>Materials and methods: </strong>Enamel specimens of 4 mm × 4 mm × 3 mm were cut and CQD solution was dialyzed in deionized water mixed with urea solution and placed in microwave system (800 W) to obtain *CQD<sub>0.1 %</sub><sup>-</sup>, **CQD<sub>0.2 %</sub><sup>-</sup>, ***CQD<sub>0.3 %</sub><sup>-</sup>, and *****CQD<sub>0.5 %</sub> for enamel blocks to be immersed for 2 weeks. X-ray diffraction analysis and density-functional theory (DFT) calculations were performed to determine degree of phase purity. Transmission electron microscopy (TEM) was used for imaging of CQDs and treated enamel, with zeta potential measured with Zetasizer. Raman spectra was acquired with spectral range of 400-2000 cm<sup>-1</sup>. Atomic force microscopy was performed with a peak force set at 200 nN. Lactobacillus biofilm was prepared on treated enamel substrates and analysed using confocal, scanning electron microscopy and TEM.</p><p><strong>Results: </strong>DFT calculations summarised improved lattice parameters of HAp***CQD<sub>0.3 %</sub><sup>-</sup> and HAp***CQD<sub>0.5 %</sub><sup>-</sup>. Zeta potential is least for salineS and is maximum for *****CQD<sub>0.5 %</sub><sup>-</sup> distributed system. The salineS, and *CQD<sub>0.1 %</sub><sup>-</sup> groups had comparable v₁PO₄³⁻ value, indicating consistent phosphate intensities. TEM successfully verified carbon dots as spherical. Enamel crystals aligned their c-axis perpendicular to the electron beam within 1° with CQDs treated specimens exhibiting misoriented-crystals. *****CQD<sub>0.5 %</sub><sup>-</sup> group had highest elastic modulus and nano hardness with maximum shear stress. Calculated bond length and angles using XRD show higher measures (p < 0.05) in all CQD groups. *****CQD<sub>0.5 %</sub><sup>-</sup> exhibited a fibre texture pattern with an orientational distribution resembling an angle distortion. Most bacteria in the biofilms fluoresced red in CQD groups with no colony chain formations observed with *****CQD<sub>0.5 %</sub><sup>-</sup> group. CQDs assemblies were observed to cause explosive lysis through loss of cell integrity.</p><p><strong>Conclusion: </strong>*****CQD<sub>0.5 %</sub><sup>-</sup> modified enamel substrate displayed significant crystallite changes providing a novel option for fabrication of diverse functional CQDs aimed at modification of enamel tissue while possessing optimum antimicrobial properties.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2025.02.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: As artificial atoms, quantum dots are widely used in quantum information research since their individual energy levels may be precisely controlled using gate voltages. The purpose of the study was to modify carbon quantum dots (CQDs) and evaluate its effects on the structure, crystal orientation and mechanical properties of the enamel substrate along with antibacterial properties of CQDs.

Materials and methods: Enamel specimens of 4 mm × 4 mm × 3 mm were cut and CQD solution was dialyzed in deionized water mixed with urea solution and placed in microwave system (800 W) to obtain *CQD0.1 %-, **CQD0.2 %-, ***CQD0.3 %-, and *****CQD0.5 % for enamel blocks to be immersed for 2 weeks. X-ray diffraction analysis and density-functional theory (DFT) calculations were performed to determine degree of phase purity. Transmission electron microscopy (TEM) was used for imaging of CQDs and treated enamel, with zeta potential measured with Zetasizer. Raman spectra was acquired with spectral range of 400-2000 cm-1. Atomic force microscopy was performed with a peak force set at 200 nN. Lactobacillus biofilm was prepared on treated enamel substrates and analysed using confocal, scanning electron microscopy and TEM.

Results: DFT calculations summarised improved lattice parameters of HAp***CQD0.3 %- and HAp***CQD0.5 %-. Zeta potential is least for salineS and is maximum for *****CQD0.5 %- distributed system. The salineS, and *CQD0.1 %- groups had comparable v₁PO₄³⁻ value, indicating consistent phosphate intensities. TEM successfully verified carbon dots as spherical. Enamel crystals aligned their c-axis perpendicular to the electron beam within 1° with CQDs treated specimens exhibiting misoriented-crystals. *****CQD0.5 %- group had highest elastic modulus and nano hardness with maximum shear stress. Calculated bond length and angles using XRD show higher measures (p < 0.05) in all CQD groups. *****CQD0.5 %- exhibited a fibre texture pattern with an orientational distribution resembling an angle distortion. Most bacteria in the biofilms fluoresced red in CQD groups with no colony chain formations observed with *****CQD0.5 %- group. CQDs assemblies were observed to cause explosive lysis through loss of cell integrity.

Conclusion: *****CQD0.5 %- modified enamel substrate displayed significant crystallite changes providing a novel option for fabrication of diverse functional CQDs aimed at modification of enamel tissue while possessing optimum antimicrobial properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Dental Materials
Dental Materials 工程技术-材料科学:生物材料
CiteScore
9.80
自引率
10.00%
发文量
290
审稿时长
67 days
期刊介绍: Dental Materials publishes original research, review articles, and short communications. Academy of Dental Materials members click here to register for free access to Dental Materials online. The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology. Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信