{"title":"Enhanced Charge Transportation in Type II WO<sub>3</sub>/ZnWO<sub>4</sub> Nanoflakes for Boosting Saline Water-splitting Reaction.","authors":"Prashant Choubey, Ritu Verma, Mrinmoyee Basu","doi":"10.1002/asia.202500292","DOIUrl":null,"url":null,"abstract":"<p><p>Photoelectrochemical (PEC) water-splitting is an energy-efficient and eco-friendly technique to produce green hydrogen (H<sub>2</sub>). Here, WO<sub>3</sub> is synthesized for saline water-splitting reaction. Initially, the activity of WO<sub>3</sub> is enhanced through morphology tuning. Nanoparticles (NPs), thick nanosheets (TSs), and nanoflakes (NFs) of WO<sub>3</sub> are synthesized, and their PEC activity is determined. The NFs show a photocurrent density of 1.53 mA/cm<sup>2</sup> at 1.2 V vs. Ag/AgCl, whereas TSs and NPs can generate 1.17 mA/cm<sup>2</sup> and 1.07 mA/cm<sup>2</sup> at 1.2 V vs. Ag/AgCl, respectively. The low charge transportation rate inhibits the PEC performance of these NFs in water-splitting reactions. To mitigate this problem, the type-II heterojunction is constructed with optimized deposition of ZnWO<sub>4</sub> on WO<sub>3,</sub> which favors the migration of charge-carriers in opposite directions, facilitating the charge-carrier separation and eventually enhancing the PEC activity. The optimized heterojunction shows a photocurrent density 1.5 times greater than bare WO<sub>3</sub> and 2.4 times enhanced carrier density, 2.16×10<sup>21</sup> cm<sup>-3</sup>. The heterostructure's rapid OCP decay and higher charge injection efficiency indicate an improved charge transport capability, the primary driving force for enhanced PEC activity. The stability of WO<sub>3</sub>/ZnWO<sub>4</sub> is studied for one hour.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202500292"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500292","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoelectrochemical (PEC) water-splitting is an energy-efficient and eco-friendly technique to produce green hydrogen (H2). Here, WO3 is synthesized for saline water-splitting reaction. Initially, the activity of WO3 is enhanced through morphology tuning. Nanoparticles (NPs), thick nanosheets (TSs), and nanoflakes (NFs) of WO3 are synthesized, and their PEC activity is determined. The NFs show a photocurrent density of 1.53 mA/cm2 at 1.2 V vs. Ag/AgCl, whereas TSs and NPs can generate 1.17 mA/cm2 and 1.07 mA/cm2 at 1.2 V vs. Ag/AgCl, respectively. The low charge transportation rate inhibits the PEC performance of these NFs in water-splitting reactions. To mitigate this problem, the type-II heterojunction is constructed with optimized deposition of ZnWO4 on WO3, which favors the migration of charge-carriers in opposite directions, facilitating the charge-carrier separation and eventually enhancing the PEC activity. The optimized heterojunction shows a photocurrent density 1.5 times greater than bare WO3 and 2.4 times enhanced carrier density, 2.16×1021 cm-3. The heterostructure's rapid OCP decay and higher charge injection efficiency indicate an improved charge transport capability, the primary driving force for enhanced PEC activity. The stability of WO3/ZnWO4 is studied for one hour.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).