Development of a Biodegradable BODIPY-ε-Caprolactone System for Rapid Colorimetric Detection of Fluoride Ions in Environmental Samples.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chandan Kumar, Sangita Rajwar, Raja Shunmugam
{"title":"Development of a Biodegradable BODIPY-ε-Caprolactone System for Rapid Colorimetric Detection of Fluoride Ions in Environmental Samples.","authors":"Chandan Kumar, Sangita Rajwar, Raja Shunmugam","doi":"10.1002/asia.202500383","DOIUrl":null,"url":null,"abstract":"<p><p>Fluoride ions (F<sup>-</sup>) are well-known for their beneficial effects on oral health and their involvement in acting osteoporosis. But it is crucial to understand that consuming too much fluoride can of several adverse health effects. Dental fluorosis, urolithiasis, and even cancer can result from excessive fluoride exposure. This is why monitoring fluoride levels is so important. A 2,4-dinitrophenyl hydrazine derivative of a BODIPY-based aldehyde system (BDNP) is a sensitive, ratiometric, and selective naked-eye sensor that we have developed for the quick detection of fluoride ions in biological and environment samples showed a significant color change from pink-to-grey and a significant redshift in absorbance maxima when interacting with fluoride ions. The notable color shift demonstrates the effectiveness of both BDNP and Poly-BDNP in detecting fluoride ions. Interestingly, here we also showed that the ring-opening polymerization (ROP) technique-synthesized biodegradable and biocompatible ε-Caprolactone homopolymer of BDNP (Poly-BDNP) is a great system that can detect fluoride ions colorimetrically with a higher limit of detection (LOD) value than the monomer and rapid detection ability. Using the UV-visible spectroscopy study and the <sup>1</sup>H NMR spectroscopic titration technique, the interaction between BDNP and fluoride ions was examined. It was determined that the deprotonation of N-H protons triggers the intermolecular charge transfer (ICT) reaction, which results in the system's dramatic color change. The precision of both BDNP and Poly-BDNP in detecting F<sup>-</sup> ions with LOD values of 7.73 µM and 87.9 nM, respectively, is determined by the ratiometric absorbance change of the sensor during the sensing process.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202500383"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500383","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fluoride ions (F-) are well-known for their beneficial effects on oral health and their involvement in acting osteoporosis. But it is crucial to understand that consuming too much fluoride can of several adverse health effects. Dental fluorosis, urolithiasis, and even cancer can result from excessive fluoride exposure. This is why monitoring fluoride levels is so important. A 2,4-dinitrophenyl hydrazine derivative of a BODIPY-based aldehyde system (BDNP) is a sensitive, ratiometric, and selective naked-eye sensor that we have developed for the quick detection of fluoride ions in biological and environment samples showed a significant color change from pink-to-grey and a significant redshift in absorbance maxima when interacting with fluoride ions. The notable color shift demonstrates the effectiveness of both BDNP and Poly-BDNP in detecting fluoride ions. Interestingly, here we also showed that the ring-opening polymerization (ROP) technique-synthesized biodegradable and biocompatible ε-Caprolactone homopolymer of BDNP (Poly-BDNP) is a great system that can detect fluoride ions colorimetrically with a higher limit of detection (LOD) value than the monomer and rapid detection ability. Using the UV-visible spectroscopy study and the 1H NMR spectroscopic titration technique, the interaction between BDNP and fluoride ions was examined. It was determined that the deprotonation of N-H protons triggers the intermolecular charge transfer (ICT) reaction, which results in the system's dramatic color change. The precision of both BDNP and Poly-BDNP in detecting F- ions with LOD values of 7.73 µM and 87.9 nM, respectively, is determined by the ratiometric absorbance change of the sensor during the sensing process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信