{"title":"Designed Fabrication of SnO<sub>2</sub>/In<sub>2</sub>O<sub>3</sub>/C Electrochemical Sensors for Coolant Leakage Detection in Energy Storage Systems.","authors":"Hongfeng Li, Yaoxuan Liu, Siqi Tian, Shuo Zhang, Zunyun Huang, Wenbin Sun, Mingze Zhang, Enzhen Zhou, Jiqing Zhang, Huizhang Zhao, Liu Yang, Xiaohui Guan","doi":"10.1021/acsomega.4c08619","DOIUrl":null,"url":null,"abstract":"<p><p>The liquid cooling system for lithium iron phosphate battery modules usually faces the threat of coolant leakage, which would dramatically affect the heat transfer performance, safety, and efficiency of the energy storage system. Herein, electrochemical sensing technology has been first employed to detect coolant leakage. Specifically, ethanol is selected as the additive reagent and used as the main tested substance, and the sensors indirectly identify the coolant leakage by detecting the leaked ethanol. In order to overcome the disadvantages of pure SnO<sub>2</sub> for ethanol detection, including poor sensing response, low gas selectivity, and high operating temperature, microspherical-structured SnO<sub>2</sub>/In<sub>2</sub>O<sub>3</sub>/C composite is designed and synthesized using a tin-indium metal-organic framework (SnIn-MOF) as the precursor. The fabricated sensor exhibits excellent gas-sensing performance. The response could reach 30.1 at 280 °C, and 1 mL of coolant with only 0.01% ethanol could be detected by the fabricated sensor. Moreover, the sensor also exhibits satisfactory cycling repeatability and stability. This outstanding sensing performance could be attributed to the high structural stability and synergistic effects of SnO<sub>2</sub>, In<sub>2</sub>O<sub>3</sub>, and carbon. This work has innovatively proposed a feasible method and designed a high-quality sensor material for coolant leakage detection in an energy storage system, which is of great importance and application potential in the field of energy storage and conversion.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 8","pages":"7848-7856"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c08619","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The liquid cooling system for lithium iron phosphate battery modules usually faces the threat of coolant leakage, which would dramatically affect the heat transfer performance, safety, and efficiency of the energy storage system. Herein, electrochemical sensing technology has been first employed to detect coolant leakage. Specifically, ethanol is selected as the additive reagent and used as the main tested substance, and the sensors indirectly identify the coolant leakage by detecting the leaked ethanol. In order to overcome the disadvantages of pure SnO2 for ethanol detection, including poor sensing response, low gas selectivity, and high operating temperature, microspherical-structured SnO2/In2O3/C composite is designed and synthesized using a tin-indium metal-organic framework (SnIn-MOF) as the precursor. The fabricated sensor exhibits excellent gas-sensing performance. The response could reach 30.1 at 280 °C, and 1 mL of coolant with only 0.01% ethanol could be detected by the fabricated sensor. Moreover, the sensor also exhibits satisfactory cycling repeatability and stability. This outstanding sensing performance could be attributed to the high structural stability and synergistic effects of SnO2, In2O3, and carbon. This work has innovatively proposed a feasible method and designed a high-quality sensor material for coolant leakage detection in an energy storage system, which is of great importance and application potential in the field of energy storage and conversion.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.