Transplantation of Chemically Induced Human Fibroblast-Derived Cells Enhances Functional Recovery in a Common Marmoset Model of Spinal Cord Injury.

IF 1.6 4区 生物学 Q4 CELL BIOLOGY
Toshihiro Kurahashi, Chiyoko Nishime, Eiko Nishinaka, Yuji Komaki, Fumiko Seki, Koji Urano, Yoshinori Harada, Toshikazu Yoshikawa, Ping Dai
{"title":"Transplantation of Chemically Induced Human Fibroblast-Derived Cells Enhances Functional Recovery in a Common Marmoset Model of Spinal Cord Injury.","authors":"Toshihiro Kurahashi, Chiyoko Nishime, Eiko Nishinaka, Yuji Komaki, Fumiko Seki, Koji Urano, Yoshinori Harada, Toshikazu Yoshikawa, Ping Dai","doi":"10.1267/ahc.24-00067","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is incurable and often leads to permanent motor dysfunction, paralysis, and sensory impairment. We previously developed a method to directly reprogram human fibroblasts into neuron-like cells using only chemical compounds. In a rat model of SCI, we transplanted chemically reprogrammed cells, termed immature chemical-induced neuron-like (CiN) cells, derived using the developed method with slight modifications and found that the immature CiN cells exhibited therapeutic efficacy in SCI. As primate models more closely mimic humans than rat models, primate experiments are required to more accurately assess the safety and efficacy of immature CiN cells before their use in humans. Therefore, in this study, we aimed to determine the therapeutic efficacy of immature CiN cell transplantation in a marmoset SCI model. Immature CiN cells were transplanted into a subacute marmoset model of SCI on Day 9 after contusion injury, and the therapeutic efficacy was assessed. Motor recovery after SCI was assessed based on spontaneous motor activity and the original open-field rating scale over six weeks, after which the spinal cord at the injury site was subjected to histopathological and MRI analyses. Animals transplanted with immature CiN cells exhibited significantly enhanced motor recovery compared to control animals, consistent with improved nerve recovery or preservation. Our findings suggest that immature CiN cells can effectively treat SCI in primates.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"58 1","pages":"19-30"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886595/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Histochemica Et Cytochemica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1267/ahc.24-00067","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) is incurable and often leads to permanent motor dysfunction, paralysis, and sensory impairment. We previously developed a method to directly reprogram human fibroblasts into neuron-like cells using only chemical compounds. In a rat model of SCI, we transplanted chemically reprogrammed cells, termed immature chemical-induced neuron-like (CiN) cells, derived using the developed method with slight modifications and found that the immature CiN cells exhibited therapeutic efficacy in SCI. As primate models more closely mimic humans than rat models, primate experiments are required to more accurately assess the safety and efficacy of immature CiN cells before their use in humans. Therefore, in this study, we aimed to determine the therapeutic efficacy of immature CiN cell transplantation in a marmoset SCI model. Immature CiN cells were transplanted into a subacute marmoset model of SCI on Day 9 after contusion injury, and the therapeutic efficacy was assessed. Motor recovery after SCI was assessed based on spontaneous motor activity and the original open-field rating scale over six weeks, after which the spinal cord at the injury site was subjected to histopathological and MRI analyses. Animals transplanted with immature CiN cells exhibited significantly enhanced motor recovery compared to control animals, consistent with improved nerve recovery or preservation. Our findings suggest that immature CiN cells can effectively treat SCI in primates.

化学诱导的人成纤维细胞来源的细胞移植增强了普通狨猴脊髓损伤模型的功能恢复。
脊髓损伤(SCI)是无法治愈的,通常会导致永久性运动功能障碍、瘫痪和感觉障碍。我们之前开发了一种方法,仅使用化合物直接将人类成纤维细胞重编程为神经元样细胞。在大鼠脊髓损伤模型中,我们移植了化学重编程的细胞,称为未成熟的化学诱导神经元样细胞(CiN),使用开发的方法进行轻微修改,发现未成熟的CiN细胞在脊髓损伤中表现出治疗效果。由于灵长类动物模型比大鼠模型更接近人类,因此在将未成熟的CiN细胞用于人类之前,需要在灵长类动物实验中更准确地评估其安全性和有效性。因此,在本研究中,我们旨在确定未成熟CiN细胞移植对狨猴SCI模型的治疗效果。将未成熟的CiN细胞于挫伤后第9天移植到亚急性脊髓损伤狨猴模型中,观察其治疗效果。在6周的时间里,根据自发运动活动和原始开放野评分量表评估脊髓损伤后的运动恢复情况,之后对损伤部位的脊髓进行组织病理学和MRI分析。与对照动物相比,移植未成熟CiN细胞的动物表现出明显增强的运动恢复,这与神经恢复或保存的改善是一致的。我们的研究结果表明,未成熟的CiN细胞可以有效地治疗灵长类动物的脊髓损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Histochemica Et Cytochemica
Acta Histochemica Et Cytochemica 生物-细胞生物学
CiteScore
3.50
自引率
8.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: Acta Histochemica et Cytochemica is the official online journal of the Japan Society of Histochemistry and Cytochemistry. It is intended primarily for rapid publication of concise, original articles in the fields of histochemistry and cytochemistry. Manuscripts oriented towards methodological subjects that contain significant technical advances in these fields are also welcome. Manuscripts in English are accepted from investigators in any country, whether or not they are members of the Japan Society of Histochemistry and Cytochemistry. Manuscripts should be original work that has not been previously published and is not being considered for publication elsewhere, with the exception of abstracts. Manuscripts with essentially the same content as a paper that has been published or accepted, or is under consideration for publication, will not be considered. All submitted papers will be peer-reviewed by at least two referees selected by an appropriate Associate Editor. Acceptance is based on scientific significance, originality, and clarity. When required, a revised manuscript should be submitted within 3 months, otherwise it will be considered to be a new submission. The Editor-in-Chief will make all final decisions regarding acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信