Toshihiro Kurahashi, Chiyoko Nishime, Eiko Nishinaka, Yuji Komaki, Fumiko Seki, Koji Urano, Yoshinori Harada, Toshikazu Yoshikawa, Ping Dai
{"title":"Transplantation of Chemically Induced Human Fibroblast-Derived Cells Enhances Functional Recovery in a Common Marmoset Model of Spinal Cord Injury.","authors":"Toshihiro Kurahashi, Chiyoko Nishime, Eiko Nishinaka, Yuji Komaki, Fumiko Seki, Koji Urano, Yoshinori Harada, Toshikazu Yoshikawa, Ping Dai","doi":"10.1267/ahc.24-00067","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is incurable and often leads to permanent motor dysfunction, paralysis, and sensory impairment. We previously developed a method to directly reprogram human fibroblasts into neuron-like cells using only chemical compounds. In a rat model of SCI, we transplanted chemically reprogrammed cells, termed immature chemical-induced neuron-like (CiN) cells, derived using the developed method with slight modifications and found that the immature CiN cells exhibited therapeutic efficacy in SCI. As primate models more closely mimic humans than rat models, primate experiments are required to more accurately assess the safety and efficacy of immature CiN cells before their use in humans. Therefore, in this study, we aimed to determine the therapeutic efficacy of immature CiN cell transplantation in a marmoset SCI model. Immature CiN cells were transplanted into a subacute marmoset model of SCI on Day 9 after contusion injury, and the therapeutic efficacy was assessed. Motor recovery after SCI was assessed based on spontaneous motor activity and the original open-field rating scale over six weeks, after which the spinal cord at the injury site was subjected to histopathological and MRI analyses. Animals transplanted with immature CiN cells exhibited significantly enhanced motor recovery compared to control animals, consistent with improved nerve recovery or preservation. Our findings suggest that immature CiN cells can effectively treat SCI in primates.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"58 1","pages":"19-30"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886595/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Histochemica Et Cytochemica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1267/ahc.24-00067","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injury (SCI) is incurable and often leads to permanent motor dysfunction, paralysis, and sensory impairment. We previously developed a method to directly reprogram human fibroblasts into neuron-like cells using only chemical compounds. In a rat model of SCI, we transplanted chemically reprogrammed cells, termed immature chemical-induced neuron-like (CiN) cells, derived using the developed method with slight modifications and found that the immature CiN cells exhibited therapeutic efficacy in SCI. As primate models more closely mimic humans than rat models, primate experiments are required to more accurately assess the safety and efficacy of immature CiN cells before their use in humans. Therefore, in this study, we aimed to determine the therapeutic efficacy of immature CiN cell transplantation in a marmoset SCI model. Immature CiN cells were transplanted into a subacute marmoset model of SCI on Day 9 after contusion injury, and the therapeutic efficacy was assessed. Motor recovery after SCI was assessed based on spontaneous motor activity and the original open-field rating scale over six weeks, after which the spinal cord at the injury site was subjected to histopathological and MRI analyses. Animals transplanted with immature CiN cells exhibited significantly enhanced motor recovery compared to control animals, consistent with improved nerve recovery or preservation. Our findings suggest that immature CiN cells can effectively treat SCI in primates.
期刊介绍:
Acta Histochemica et Cytochemica is the official online journal of the Japan Society of Histochemistry and Cytochemistry. It is intended primarily for rapid publication of concise, original articles in the fields of histochemistry and cytochemistry. Manuscripts oriented towards methodological subjects that contain significant technical advances in these fields are also welcome. Manuscripts in English are accepted from investigators in any country, whether or not they are members of the Japan Society of Histochemistry and Cytochemistry. Manuscripts should be original work that has not been previously published and is not being considered for publication elsewhere, with the exception of abstracts. Manuscripts with essentially the same content as a paper that has been published or accepted, or is under consideration for publication, will not be considered. All submitted papers will be peer-reviewed by at least two referees selected by an appropriate Associate Editor. Acceptance is based on scientific significance, originality, and clarity. When required, a revised manuscript should be submitted within 3 months, otherwise it will be considered to be a new submission. The Editor-in-Chief will make all final decisions regarding acceptance.