Rational Design of Stapled Covalent Peptide Modifiers of Oncoprotein E6 from Human Papillomavirus.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
ACS Chemical Biology Pub Date : 2025-03-21 Epub Date: 2025-03-10 DOI:10.1021/acschembio.4c00878
Cole Emanuelson, Yuta Naro, Olivia Shade, Melinda Liu, Sagar D Khare, Alexander Deiters
{"title":"Rational Design of Stapled Covalent Peptide Modifiers of Oncoprotein E6 from Human Papillomavirus.","authors":"Cole Emanuelson, Yuta Naro, Olivia Shade, Melinda Liu, Sagar D Khare, Alexander Deiters","doi":"10.1021/acschembio.4c00878","DOIUrl":null,"url":null,"abstract":"<p><p>Human Papillomavirus (HPV) is linked to multiple cancers, most significantly cervical cancer, for which HPV infection is associated with nearly all cases. Essential to the oncogenesis of HPV is the function of the viral protein E6 and its role in degrading the cell cycle regulator p53. Degradation of p53, and the resultant loss of cell cycle control, is mediated by E6 recruitment of the E3 ubiquitin ligase E6AP and subsequent ubiquitination of p53. Here, we report the design of a stapled peptide that mimics the LxxLL α-helical domain of E6AP to bind and covalently label a cysteine residue specific to HPV-16 E6. Several acrylamide- and haloacetamide-based warheads were evaluated for reactivity and specificity, and a panel of hydrocarbon-stapled peptides was evaluated for enhanced binding affinity and increased proteolytic stability. Structure-based modeling was used to rationalize the observed trends in the reactivity of the warheads and the impact of the hydrocarbon staple position on the binding affinity of the stapled peptides. The development of a proteolytically stable and reactive peptide represents a new class of peptide-based inhibitors of protein-protein interactions with a potential therapeutic value toward HPV-derived cancers.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"746-757"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934087/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00878","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human Papillomavirus (HPV) is linked to multiple cancers, most significantly cervical cancer, for which HPV infection is associated with nearly all cases. Essential to the oncogenesis of HPV is the function of the viral protein E6 and its role in degrading the cell cycle regulator p53. Degradation of p53, and the resultant loss of cell cycle control, is mediated by E6 recruitment of the E3 ubiquitin ligase E6AP and subsequent ubiquitination of p53. Here, we report the design of a stapled peptide that mimics the LxxLL α-helical domain of E6AP to bind and covalently label a cysteine residue specific to HPV-16 E6. Several acrylamide- and haloacetamide-based warheads were evaluated for reactivity and specificity, and a panel of hydrocarbon-stapled peptides was evaluated for enhanced binding affinity and increased proteolytic stability. Structure-based modeling was used to rationalize the observed trends in the reactivity of the warheads and the impact of the hydrocarbon staple position on the binding affinity of the stapled peptides. The development of a proteolytically stable and reactive peptide represents a new class of peptide-based inhibitors of protein-protein interactions with a potential therapeutic value toward HPV-derived cancers.

人乳头瘤病毒癌蛋白E6钉接共价肽修饰剂的合理设计
人类乳头瘤病毒(HPV)与多种癌症有关,最显著的是宫颈癌,HPV感染几乎与所有病例有关。对HPV的肿瘤发生至关重要的是病毒蛋白E6的功能及其在降解细胞周期调节因子p53中的作用。p53的降解,以及由此导致的细胞周期控制的丧失,是由E6募集E3泛素连接酶E6AP和随后的p53泛素化介导的。在这里,我们报道了一种钉接肽的设计,它模仿E6AP的LxxLL α-螺旋结构域,结合并共价标记hpv - 16e6特异性的半胱氨酸残基。对几种基于丙烯酰胺和卤代乙酰胺的弹头进行了反应性和特异性评估,并对一组碳氢化合物钉接肽进行了评估,以增强结合亲和力和提高蛋白水解稳定性。采用基于结构的模型对观察到的战斗部反应性趋势以及碳氢化合物短钉位置对钉接肽结合亲和力的影响进行了合理化。一种蛋白水解稳定的活性肽的开发代表了一类新的基于肽的蛋白质-蛋白质相互作用抑制剂,对hpv衍生的癌症具有潜在的治疗价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信