{"title":"Comparative analysis of topological entropy levels in covalent organic radical frameworks and mathematical models for predicting graph energy","authors":"Xiujun Zhang, Micheal Arockiaraj, Aravindan Maaran, Arul Jeya Shalini","doi":"10.1007/s11696-024-03827-2","DOIUrl":null,"url":null,"abstract":"<div><p>Covalent organic frameworks have gained significant scientific interest for their unique ability to create highly specific materials with atomic-level precision. These frameworks enable the formation of rigid, lightweight, stable, and porous structures that often outperform established materials. Organic radicals, known for their magnetizable properties, have led to the development of covalent organic radical frameworks (CORFs). This paper explores the graph structural properties of polychlorotriphenylmethyl and triarylmethyl radicals frameworks, calculating entropy levels through hybrid topological descriptors and comparing their topological complexity. These descriptors are further employed to develop statistical regression models for predicting the graph energy of CORFs in higher-dimensional frameworks.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"79 2","pages":"923 - 940"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03827-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks have gained significant scientific interest for their unique ability to create highly specific materials with atomic-level precision. These frameworks enable the formation of rigid, lightweight, stable, and porous structures that often outperform established materials. Organic radicals, known for their magnetizable properties, have led to the development of covalent organic radical frameworks (CORFs). This paper explores the graph structural properties of polychlorotriphenylmethyl and triarylmethyl radicals frameworks, calculating entropy levels through hybrid topological descriptors and comparing their topological complexity. These descriptors are further employed to develop statistical regression models for predicting the graph energy of CORFs in higher-dimensional frameworks.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.