Assessing the toxic potency of absorbed trihalomethanes in leafy vegetables: the effects of different Chlorine pretreatment

IF 3 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Samaneh Fattahi-Zaim, Abdol-Samad Abedi, Ali Heshmati, Leila Nezamoleslami, Vahid Ghasemzadeh-Mohammadi
{"title":"Assessing the toxic potency of absorbed trihalomethanes in leafy vegetables: the effects of different Chlorine pretreatment","authors":"Samaneh Fattahi-Zaim,&nbsp;Abdol-Samad Abedi,&nbsp;Ali Heshmati,&nbsp;Leila Nezamoleslami,&nbsp;Vahid Ghasemzadeh-Mohammadi","doi":"10.1007/s40201-025-00935-3","DOIUrl":null,"url":null,"abstract":"<div><p>Trihalomethanes (THMs) are a class of compounds formed when organic substances in water interact with halogen disinfectants such as chlorine. The specific THMs include CHBr<sub>3</sub>, CHClBr<sub>2</sub>, CHCl<sub>2</sub>Br, and CHCl<sub>3</sub>. THMs are toxic disinfection by-products (DBPs) that pose potential risks to human health and can be present in ready-to-eat vegetables. Our study examined key variables such as contact time, chlorine concentration, and vegetable type on the formation and absorption of these contaminants. Laboratory simulations involved 22 samples characterized by differing chlorine concentrations, contact durations, and three vegetable types: celery, lettuce, and leek. The result showed that the maximum concentration of THMs (354.73 µg L<sup>− 1</sup>) in celery was observed when 300 mg L-1 of chlorine for 15 min was employed. The results demonstrated that contact time significantly affected the formation and absorption of THMs. Celery demonstrates a greater absorption of THMs than others. The evaluation of lifetime cancer risk (LTCR) and hazard index (HI) for THMs across 22 simulated test conditions indicated that CHClBr<sub>2</sub> exhibited the highest LTCR at 7.34 × 10^<sup>−6</sup>. Also, the average influence of LTCR for CHBr<sub>2</sub>Cl constituted 64%, CHBr<sub>3</sub> accounted for 21%, CHBrCl<sub>2</sub> represented 10%, and CHCl<sub>3</sub> was 5%. The results showed that CHBr<sub>3</sub> had the most effect on the hazard index, while CHCl<sub>3</sub> showed the lowest impact. These findings assist food industry professionals in reducing THM absorption by regulating chlorine concentration and contact time during vegetable disinfection.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"23 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-025-00935-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Trihalomethanes (THMs) are a class of compounds formed when organic substances in water interact with halogen disinfectants such as chlorine. The specific THMs include CHBr3, CHClBr2, CHCl2Br, and CHCl3. THMs are toxic disinfection by-products (DBPs) that pose potential risks to human health and can be present in ready-to-eat vegetables. Our study examined key variables such as contact time, chlorine concentration, and vegetable type on the formation and absorption of these contaminants. Laboratory simulations involved 22 samples characterized by differing chlorine concentrations, contact durations, and three vegetable types: celery, lettuce, and leek. The result showed that the maximum concentration of THMs (354.73 µg L− 1) in celery was observed when 300 mg L-1 of chlorine for 15 min was employed. The results demonstrated that contact time significantly affected the formation and absorption of THMs. Celery demonstrates a greater absorption of THMs than others. The evaluation of lifetime cancer risk (LTCR) and hazard index (HI) for THMs across 22 simulated test conditions indicated that CHClBr2 exhibited the highest LTCR at 7.34 × 10^−6. Also, the average influence of LTCR for CHBr2Cl constituted 64%, CHBr3 accounted for 21%, CHBrCl2 represented 10%, and CHCl3 was 5%. The results showed that CHBr3 had the most effect on the hazard index, while CHCl3 showed the lowest impact. These findings assist food industry professionals in reducing THM absorption by regulating chlorine concentration and contact time during vegetable disinfection.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Health Science and Engineering
Journal of Environmental Health Science and Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
7.50
自引率
2.90%
发文量
81
期刊介绍: Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management. A broad outline of the journal''s scope includes: -Water pollution and treatment -Wastewater treatment and reuse -Air control -Soil remediation -Noise and radiation control -Environmental biotechnology and nanotechnology -Food safety and hygiene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信