Some approximation properties of Riemann-Liouville type fractional Bernstein-Stancu-Kantorovich operators with order of \(\alpha\)

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Reşat Aslan
{"title":"Some approximation properties of Riemann-Liouville type fractional Bernstein-Stancu-Kantorovich operators with order of \\(\\alpha\\)","authors":"Reşat Aslan","doi":"10.1007/s40995-024-01754-1","DOIUrl":null,"url":null,"abstract":"<div><p>The main intent of this paper is to examine some approximation properties of Riemann-Liouville type fractional Bernstein-Stancu-Kantorovich operators with order of <span>\\(\\alpha\\)</span>. We derive some moment estimates and show the uniform convergence theorem, degree of convergence with respect to the usual modulus of continuity, class of Lipschitz-type continuous functions and as well as Peetre’s <i>K</i>-functional. Furthermore, we present various graphical and numerical examples to demonstrate and compare the effectiveness of the proposed operators. Also, we construct bivariate extension of the related operators and consider order of approximation by means of partial and complete modulus of continuity. Further, we provide a graphical representation and an error of approximation table to show the behavior order of convergence of bivariate form of discussed operators.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 2","pages":"481 - 494"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01754-1","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The main intent of this paper is to examine some approximation properties of Riemann-Liouville type fractional Bernstein-Stancu-Kantorovich operators with order of \(\alpha\). We derive some moment estimates and show the uniform convergence theorem, degree of convergence with respect to the usual modulus of continuity, class of Lipschitz-type continuous functions and as well as Peetre’s K-functional. Furthermore, we present various graphical and numerical examples to demonstrate and compare the effectiveness of the proposed operators. Also, we construct bivariate extension of the related operators and consider order of approximation by means of partial and complete modulus of continuity. Further, we provide a graphical representation and an error of approximation table to show the behavior order of convergence of bivariate form of discussed operators.

黎曼-利乌维尔分式伯恩斯坦-斯坦库-康托洛维奇算子的一些近似性质
本文的主要目的是研究阶为\(\alpha\)的Riemann-Liouville型分数阶Bernstein-Stancu-Kantorovich算子的一些近似性质。我们给出了一些矩估计,并给出了一致收敛定理,关于通常连续模的收敛度,一类lipschitz型连续函数,以及Peetre的k泛函。此外,我们给出了各种图形和数值例子来证明和比较所提出算子的有效性。此外,我们构造了相关算子的二元扩展,并利用连续性的部分模和完全模考虑了近似的阶。在此基础上,给出了二元算子收敛性的图形表示和误差近似表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信