Mouhaned Y. Al-darwesh, Karukh Ali Babakr, Ibrahim Nazem Qader, Mohammed A. Mohammed
{"title":"Antimicrobial, anti-inflammatory, and anticancer potential of green synthesis TiO2 nanoparticles using Sophora flavescens root extract","authors":"Mouhaned Y. Al-darwesh, Karukh Ali Babakr, Ibrahim Nazem Qader, Mohammed A. Mohammed","doi":"10.1007/s11696-024-03853-0","DOIUrl":null,"url":null,"abstract":"<div><p>Investigating the anticancer and antimicrobial properties of nanoparticles (NPs) is essential due to the increasing demand for precise and targeted treatments against the new generation of resistant pathogens and cancer. This study uniquely demonstrates the green synthesis of anatase-phase TiO<sub>2</sub> nanoparticles using <i>Sophora flavescens</i> root extract, achieving developed multifunctional properties, including outstanding antibacterial, anticancer, and anti-inflammatory activities. Several characterization techniques, including X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible (UV–Vis) spectroscopy, were employed to analyze the synthesized NPs. The photodegradation of Bromophenol Blue was modeled using a pseudo first-order kinetic model, with a maximum K1 occurring at 20 °C that continuously declines with increasing temperature, indicating a decrease in the degradation rate constants. The antibacterial activity was assessed using the Resazurin Microtiter-plate Assay (REMA), demonstrating significant inhibition of bacterial strains. The study concludes that TiO<sub>2</sub> NPs exhibit strong antibacterial efficiency, with inhibition zones measuring 15.7 mm for Staphylococcus aureus (gram-positive) and 13.2 mm for Escherichia coli (gram-negative). Additionally, the NPs were tested for anticancer properties against the MCF-7 breast cancer cell line, resulting in a cell viability rate of 62%. Biogenic metallic nanoparticles (TiO<sub>2</sub> NPs) demonstrate high efficacy in eradicating antibiotic-resistant bacteria due to their small size and bactericidal properties. Their stability and ability to penetrate bacterial cells enhance their antibacterial efficacy, particularly against gram-positive bacteria. To conclude, the growing demand for sustainable methods to synthesize multifunctional NPs is driven by challenges such as antibiotic resistance, environmental pollution, and the limitations of conventional anticancer treatments. The green synthesis of TiO<sub>2</sub> NPs using <i>Sophora flavescens</i> root extract presents an eco-friendly and efficient solution to these problems.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"79 2","pages":"1207 - 1221"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03853-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating the anticancer and antimicrobial properties of nanoparticles (NPs) is essential due to the increasing demand for precise and targeted treatments against the new generation of resistant pathogens and cancer. This study uniquely demonstrates the green synthesis of anatase-phase TiO2 nanoparticles using Sophora flavescens root extract, achieving developed multifunctional properties, including outstanding antibacterial, anticancer, and anti-inflammatory activities. Several characterization techniques, including X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible (UV–Vis) spectroscopy, were employed to analyze the synthesized NPs. The photodegradation of Bromophenol Blue was modeled using a pseudo first-order kinetic model, with a maximum K1 occurring at 20 °C that continuously declines with increasing temperature, indicating a decrease in the degradation rate constants. The antibacterial activity was assessed using the Resazurin Microtiter-plate Assay (REMA), demonstrating significant inhibition of bacterial strains. The study concludes that TiO2 NPs exhibit strong antibacterial efficiency, with inhibition zones measuring 15.7 mm for Staphylococcus aureus (gram-positive) and 13.2 mm for Escherichia coli (gram-negative). Additionally, the NPs were tested for anticancer properties against the MCF-7 breast cancer cell line, resulting in a cell viability rate of 62%. Biogenic metallic nanoparticles (TiO2 NPs) demonstrate high efficacy in eradicating antibiotic-resistant bacteria due to their small size and bactericidal properties. Their stability and ability to penetrate bacterial cells enhance their antibacterial efficacy, particularly against gram-positive bacteria. To conclude, the growing demand for sustainable methods to synthesize multifunctional NPs is driven by challenges such as antibiotic resistance, environmental pollution, and the limitations of conventional anticancer treatments. The green synthesis of TiO2 NPs using Sophora flavescens root extract presents an eco-friendly and efficient solution to these problems.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.