Application of a geomorphic restoration method for landslide susceptibility mapping along the rapidly uplifting section of the upper Jinsha river, South-Western China

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Sun Xiaohui, Liu Guoqing, Zhao Tong, Tang Li, Han Xudong, Peng Wei
{"title":"Application of a geomorphic restoration method for landslide susceptibility mapping along the rapidly uplifting section of the upper Jinsha river, South-Western China","authors":"Sun Xiaohui,&nbsp;Liu Guoqing,&nbsp;Zhao Tong,&nbsp;Tang Li,&nbsp;Han Xudong,&nbsp;Peng Wei","doi":"10.1007/s10064-025-04213-2","DOIUrl":null,"url":null,"abstract":"<div><p>The upper reaches of the Jinsha River are located in the area of rapid uplift of the Tibetan Plateau, which has strong geological structure activities, huge relief of terrain, complex climate characteristics and frequent landslides. Therefore, the susceptibility mapping of landslide disaster in the upper reaches of Jinsha River is of great practical significance to ensure the safety of local people’s property and the safe development of hydraulic resources. However, the landslides in the study area are mainly large to giant landslides, which have a great effect on the change of the original geomorphic features after the occurrence of landslides. The landslide susceptibility mapping based on the geomorphic features after the occurrence of landslides will inevitably reduce the reliability of the evaluation results. In order to deal with landslide disaster more effectively, this study proposed a landslide susceptibility mapping method based on geomorphic restoration. Firstly, high-resolution remote sensing images and field investigation are used to obtain geomorphic feature data, and the damaged geomorphic features are restored and reconstructed. Then, the influence factor system of landslide susceptibility mapping, which includes 14 influencing factors such as lithology, is established, and the landslide susceptibility model is established by using support vector machine (SVM) model. The results show that the classification of slope units based on geomorphic recovery method is more reasonable, and the landslide susceptibility model has higher prediction accuracy. In conclusion, geomorphic restoration plays a key role in accurately mapping landslide susceptibility, and can provide valuable reference for regional disaster prevention and mitigation.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04213-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The upper reaches of the Jinsha River are located in the area of rapid uplift of the Tibetan Plateau, which has strong geological structure activities, huge relief of terrain, complex climate characteristics and frequent landslides. Therefore, the susceptibility mapping of landslide disaster in the upper reaches of Jinsha River is of great practical significance to ensure the safety of local people’s property and the safe development of hydraulic resources. However, the landslides in the study area are mainly large to giant landslides, which have a great effect on the change of the original geomorphic features after the occurrence of landslides. The landslide susceptibility mapping based on the geomorphic features after the occurrence of landslides will inevitably reduce the reliability of the evaluation results. In order to deal with landslide disaster more effectively, this study proposed a landslide susceptibility mapping method based on geomorphic restoration. Firstly, high-resolution remote sensing images and field investigation are used to obtain geomorphic feature data, and the damaged geomorphic features are restored and reconstructed. Then, the influence factor system of landslide susceptibility mapping, which includes 14 influencing factors such as lithology, is established, and the landslide susceptibility model is established by using support vector machine (SVM) model. The results show that the classification of slope units based on geomorphic recovery method is more reasonable, and the landslide susceptibility model has higher prediction accuracy. In conclusion, geomorphic restoration plays a key role in accurately mapping landslide susceptibility, and can provide valuable reference for regional disaster prevention and mitigation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信