Spatio-temporal characterization of the three-dimensional wave dynamics in falling film flows over rectangular corrugations

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Andrea Düll, Jannick Lehmann, Marion Börnhorst, Cihan Ateş, Thomas Häber, Olaf Deutschmann
{"title":"Spatio-temporal characterization of the three-dimensional wave dynamics in falling film flows over rectangular corrugations","authors":"Andrea Düll,&nbsp;Jannick Lehmann,&nbsp;Marion Börnhorst,&nbsp;Cihan Ateş,&nbsp;Thomas Häber,&nbsp;Olaf Deutschmann","doi":"10.1007/s00348-025-03978-2","DOIUrl":null,"url":null,"abstract":"<div><p>Falling film flows over rectangular corrugations can exhibit intense time-oscillatory interfacial motion. This is of considerable interest for heat and mass transfer applications, where structured surfaces play a crucial role in process intensification. Our contribution relies on high-speed imaging and image processing based on an internally referenced light absorption method to obtain a full spatio-temporal characterization of the structure-induced wave evolution. After validating the customized experimental technique, particular emphasis is placed on identifying relationships between the steady and transient characteristics of aqueous falling film flows under operating conditions relevant to, e.g., falling film absorbers for <span>\\(\\text {CO}_2\\)</span> capture applications. The transient film instabilities are found to evolve from an initially steady film flow. In the investigated Reynolds number range, inertia-controlled liquid overshoot in wall-normal direction at the structure element’s upstream edges plays a crucial role in the overall flow destabilization. The developed film flow can be decomposed into a steady and a time-oscillatory flow contribution. The former is characterized by a dominant two-dimensional wave shape with a primary wavelength matching that of the bottom contour, while the latter is more isotropic in shape. Nevertheless, both flow contributions are interconnected, with high oscillation intensities being usually accompanied by a strongly sloped steady base flow. In the context of surface structure optimization, the streamwise length scale of the steady interfacial ridge induced at an isolated structure element may serve as a predictor for identifying structure spacings that exhibit particularly strong transient flow destabilization.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-03978-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-03978-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Falling film flows over rectangular corrugations can exhibit intense time-oscillatory interfacial motion. This is of considerable interest for heat and mass transfer applications, where structured surfaces play a crucial role in process intensification. Our contribution relies on high-speed imaging and image processing based on an internally referenced light absorption method to obtain a full spatio-temporal characterization of the structure-induced wave evolution. After validating the customized experimental technique, particular emphasis is placed on identifying relationships between the steady and transient characteristics of aqueous falling film flows under operating conditions relevant to, e.g., falling film absorbers for \(\text {CO}_2\) capture applications. The transient film instabilities are found to evolve from an initially steady film flow. In the investigated Reynolds number range, inertia-controlled liquid overshoot in wall-normal direction at the structure element’s upstream edges plays a crucial role in the overall flow destabilization. The developed film flow can be decomposed into a steady and a time-oscillatory flow contribution. The former is characterized by a dominant two-dimensional wave shape with a primary wavelength matching that of the bottom contour, while the latter is more isotropic in shape. Nevertheless, both flow contributions are interconnected, with high oscillation intensities being usually accompanied by a strongly sloped steady base flow. In the context of surface structure optimization, the streamwise length scale of the steady interfacial ridge induced at an isolated structure element may serve as a predictor for identifying structure spacings that exhibit particularly strong transient flow destabilization.

落膜流在矩形波纹中的三维波动动力学的时空特征
落膜流在矩形波纹上可以表现出强烈的时间振荡界面运动。这对于传热传质应用具有重要意义,其中结构表面在过程强化中起着至关重要的作用。我们的贡献依赖于基于内部参考光吸收方法的高速成像和图像处理,以获得结构诱导波演化的完整时空特征。在验证了定制的实验技术之后,特别强调的是在与\(\text {CO}_2\)捕获应用的降膜吸收器等相关的操作条件下,确定水降膜流动的稳定和瞬态特性之间的关系。发现瞬态膜不稳定性是从初始稳定的膜流演变而来的。在所研究的雷诺数范围内,结构单元上游边缘沿壁法向方向的惯性控制液体超调对整体流动失稳起着至关重要的作用。形成的膜流可以分解为稳定流贡献和时间振荡流贡献。前者的特点是主要的二维波形,其主要波长与底部轮廓相匹配,而后者在形状上更具有各向同性。然而,两种流动贡献是相互关联的,高振荡强度通常伴随着强烈倾斜的稳定基流。在表面结构优化的背景下,在孤立结构单元处产生的稳定界面脊的顺流长度尺度可以作为识别具有特别强的瞬态流动不稳定的结构间距的预测因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信