Jia Rong Zhao, Yu Qin Long, Cong Chun Chen, Xiao Liu, Qian Wan, Wei Zhang
{"title":"Numerical simulation analysis of the axial compressive performance of UHPC hoop-restrained reinforced concrete columns","authors":"Jia Rong Zhao, Yu Qin Long, Cong Chun Chen, Xiao Liu, Qian Wan, Wei Zhang","doi":"10.1007/s00419-025-02780-0","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the axial compressive behavior of reinforced concrete (RC) square columns enhanced with ultra-high-performance concrete (UHPC) under specific conditions, a composite column model comprising \"UHPC + steel mesh\" was developed using finite element analysis software. This approach distinguishes between confined and unconfined zones within the column. The study examined the effects of UHPC shell thickness, longitudinal bar spacing, and stirrup spacing on the axial compression characteristics, failure mechanisms, and load-bearing capacity of RC square columns. The results indicate that increasing the thickness of the UHPC shell significantly enhances load capacity from 2172 kN to 5132 kN while concurrently reducing ductility. In contrast, reducing stirrup spacing has a minimal effect, yielding an increase in load capacity of only 806 kN. Adjusting the longitudinal rib spacing greatly enhances ductility while concurrently achieving a comparable increase in load capacity, namely by 704 kN. The suggested calculation model for the RC was theoretically validated against the restricted concrete theory and shown strong concordance with experimental data.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-025-02780-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the axial compressive behavior of reinforced concrete (RC) square columns enhanced with ultra-high-performance concrete (UHPC) under specific conditions, a composite column model comprising "UHPC + steel mesh" was developed using finite element analysis software. This approach distinguishes between confined and unconfined zones within the column. The study examined the effects of UHPC shell thickness, longitudinal bar spacing, and stirrup spacing on the axial compression characteristics, failure mechanisms, and load-bearing capacity of RC square columns. The results indicate that increasing the thickness of the UHPC shell significantly enhances load capacity from 2172 kN to 5132 kN while concurrently reducing ductility. In contrast, reducing stirrup spacing has a minimal effect, yielding an increase in load capacity of only 806 kN. Adjusting the longitudinal rib spacing greatly enhances ductility while concurrently achieving a comparable increase in load capacity, namely by 704 kN. The suggested calculation model for the RC was theoretically validated against the restricted concrete theory and shown strong concordance with experimental data.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.