Adsorptive and photocatalytic remediation of greywater in wastewater: a review

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Saheed O. Sanni, Agnes Pholosi, Vusumzi E. Pakade, Hendrik G. Brink
{"title":"Adsorptive and photocatalytic remediation of greywater in wastewater: a review","authors":"Saheed O. Sanni,&nbsp;Agnes Pholosi,&nbsp;Vusumzi E. Pakade,&nbsp;Hendrik G. Brink","doi":"10.1007/s10450-025-00607-6","DOIUrl":null,"url":null,"abstract":"<div><p>Bathroom, and laundry greywater (GW) components are considered significant urban wastewater and are classified as hazardous substances that contaminate groundwater resources. Thus, achieving permitted levels for GW before discharging into the environment requires the removal or reduction, which has become a challenge. Various techniques have been developed to decontaminate GW from wastewater, comprising biological, chemical, filtration, adsorption, membrane separation, and photocatalytic degradation. Due to the simplicity, cost-effectiveness, abundance of materials, and capacity for facile scaling-up for remediation purposes, adsorption and photocatalysis technologies have been widely utilized in GW wastewater treatment. This review thus first explains the sources of GW and components found within this particular wastewater, which are critical for removal. The second part reviews various adsorbents or photocatalysts, including materials of macro, micro, and nanosize utilized for GW treatment. The review highlights the significance of activated carbon among all adsorbents under adsorption technology reviewed with the highest removal rate of chemical oxygen demand (COD), and biochemical oxygen demand BOD in GW. Moreover, the doped titanium dioxide photocatalyst also presented significant removal of COD, and BOD in GW within a shorter space of time. The impact of surface area and chemical functionalities of the adsorbent, and whilst aspect of nanostructure and absorptivity of photocatalyst in the visible region of the solar spectrum on the expedited removal of GW was also highlighted. Furthermore, this review emphasizes photocatalyst nanomaterial achieving a complete mineralization of different components present in GW, into mineral products.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-025-00607-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bathroom, and laundry greywater (GW) components are considered significant urban wastewater and are classified as hazardous substances that contaminate groundwater resources. Thus, achieving permitted levels for GW before discharging into the environment requires the removal or reduction, which has become a challenge. Various techniques have been developed to decontaminate GW from wastewater, comprising biological, chemical, filtration, adsorption, membrane separation, and photocatalytic degradation. Due to the simplicity, cost-effectiveness, abundance of materials, and capacity for facile scaling-up for remediation purposes, adsorption and photocatalysis technologies have been widely utilized in GW wastewater treatment. This review thus first explains the sources of GW and components found within this particular wastewater, which are critical for removal. The second part reviews various adsorbents or photocatalysts, including materials of macro, micro, and nanosize utilized for GW treatment. The review highlights the significance of activated carbon among all adsorbents under adsorption technology reviewed with the highest removal rate of chemical oxygen demand (COD), and biochemical oxygen demand BOD in GW. Moreover, the doped titanium dioxide photocatalyst also presented significant removal of COD, and BOD in GW within a shorter space of time. The impact of surface area and chemical functionalities of the adsorbent, and whilst aspect of nanostructure and absorptivity of photocatalyst in the visible region of the solar spectrum on the expedited removal of GW was also highlighted. Furthermore, this review emphasizes photocatalyst nanomaterial achieving a complete mineralization of different components present in GW, into mineral products.

废水中灰水的吸附与光催化修复研究进展
浴室和洗衣房的灰水(GW)成分被认为是重要的城市废水,被列为污染地下水资源的有害物质。因此,在排放到环境中之前达到GW的允许水平需要去除或减少,这已成为一项挑战。从废水中去除GW的各种技术已经发展起来,包括生物、化学、过滤、吸附、膜分离和光催化降解。吸附和光催化技术由于其简单、经济、材料丰富、易于扩大修复规模等优点,在GW废水处理中得到了广泛的应用。因此,本综述首先解释了GW的来源和在该特定废水中发现的组分,这对去除至关重要。第二部分综述了各种吸附剂或光催化剂,包括用于GW处理的宏观、微观和纳米材料。综述了活性炭在各种吸附剂中的重要作用,并对GW中化学需氧量(COD)和生化需氧量(BOD)的去除率进行了综述。此外,掺杂二氧化钛光催化剂在较短的时间内也能显著去除GW中的COD和BOD。本文还重点讨论了吸附剂的表面积和化学功能,以及纳米结构和光催化剂在太阳光谱可见区域的吸收率对加速去除GW的影响。此外,本文还着重介绍了光催化剂纳米材料实现GW中不同组分的完全矿化,并将其转化为矿物产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信