Characterization of intestinal bacteria for the production of quercetin and isoquercitrin from rutin

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Narantsetseg Byambaakhuu, Shen Duan, Ren Sa, Qing-lan Yang, Hai-Yan Xu, Cheng-Bin Shan, Ri-hua Xu, Chao-Mei Ma
{"title":"Characterization of intestinal bacteria for the production of quercetin and isoquercitrin from rutin","authors":"Narantsetseg Byambaakhuu,&nbsp;Shen Duan,&nbsp;Ren Sa,&nbsp;Qing-lan Yang,&nbsp;Hai-Yan Xu,&nbsp;Cheng-Bin Shan,&nbsp;Ri-hua Xu,&nbsp;Chao-Mei Ma","doi":"10.1007/s00203-025-04278-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study was to evaluate the potential of human intestinal bacterial species in the biotransformation of rutin to quercetin and isoquercitrin which is rarer than rutin in nature and could more potently inhibit the growth of some cancer cell lines. Bacterial strains isolated from healthy human fecal samples were identified through 16S rDNA gene sequence analysis and genome analysis. Isoquercitrin and quercetin were identified and quantified by UHPLC-QQQ-MS in multiple reaction monitoring mode. As results, the intestinal bacterial strains, comprising nine Gram-positive rods and one Gram-negative rod, were classified into <i>Enterococcus</i>, <i>Lactococcus</i>, and <i>Escherichia</i> genera. Among the ten isolates<i>, Lactococcus garvieae</i> Y3-2 and <i>Lactococcus petauri</i> Y5-4 produced higher amounts of quercetin compared to other bacteria. Interestingly, all strains of <i>Enterococcus faecium</i> species (Y4-1, Y4-2, Y5-1, and Y5-2) exhibited a relatively strong ability to convert rutin to isoquercitrin, with Y4-2 being particularly efficient. The higher L-rhamnosidase activity observed in <i>E. faecium</i> Y4-1 and <i>E. faecium</i> Y4-2 correlated with their significant yield of isoquercitrin. Four or three genes were probably involved in rutin metabolism according to the analysis of flavonoid pathway based on genome sequences. The results provided information for selecting bacterial species to convert rutin into target bioactive compounds, and for purification of pure enzymes to biosynthesize isoquercitrin.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04278-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study was to evaluate the potential of human intestinal bacterial species in the biotransformation of rutin to quercetin and isoquercitrin which is rarer than rutin in nature and could more potently inhibit the growth of some cancer cell lines. Bacterial strains isolated from healthy human fecal samples were identified through 16S rDNA gene sequence analysis and genome analysis. Isoquercitrin and quercetin were identified and quantified by UHPLC-QQQ-MS in multiple reaction monitoring mode. As results, the intestinal bacterial strains, comprising nine Gram-positive rods and one Gram-negative rod, were classified into Enterococcus, Lactococcus, and Escherichia genera. Among the ten isolates, Lactococcus garvieae Y3-2 and Lactococcus petauri Y5-4 produced higher amounts of quercetin compared to other bacteria. Interestingly, all strains of Enterococcus faecium species (Y4-1, Y4-2, Y5-1, and Y5-2) exhibited a relatively strong ability to convert rutin to isoquercitrin, with Y4-2 being particularly efficient. The higher L-rhamnosidase activity observed in E. faecium Y4-1 and E. faecium Y4-2 correlated with their significant yield of isoquercitrin. Four or three genes were probably involved in rutin metabolism according to the analysis of flavonoid pathway based on genome sequences. The results provided information for selecting bacterial species to convert rutin into target bioactive compounds, and for purification of pure enzymes to biosynthesize isoquercitrin.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信