Fabrication of nanocomposite based on oxidized biochar and oxidized cellulose nanofibers and its potential cd(II) adsorption

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Naglaa Salem EL-Sayed, Sawsan Dacrory, Mohamed El-Sakhawy, El Barbary Hassan, Samir Kamel
{"title":"Fabrication of nanocomposite based on oxidized biochar and oxidized cellulose nanofibers and its potential cd(II) adsorption","authors":"Naglaa Salem EL-Sayed,&nbsp;Sawsan Dacrory,&nbsp;Mohamed El-Sakhawy,&nbsp;El Barbary Hassan,&nbsp;Samir Kamel","doi":"10.1007/s10450-025-00610-x","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, the oxidized biochar (OBC) derived from rice straw was prepared and homogeneously embedded into TEMPO-mediated oxidized cellulose nanofiber (TOCNF). The resulting colloidal suspension, when mixed with OBC and crosslinked via ionic interaction using branched polyethyleneimine, forms nanocomposites with promising potential. The characterization of these composites, including SEM, EDX, surface morphology, and spatial elemental composition, reveals their unique properties. The effect of adding OBC to TOCNF at different ratios is estimated by surface area analysis following the BET and BJH methods. The adsorption settings for the as-formed composites were investigated to optimize the adsorption effectiveness of the fabricated sorbents. These conditions included contact time, Cd(II) concentration, pH, and sorbent dosage. With greater adsorption effectiveness of 70% and 90% at 1 h and 2 h, the nanocomposite with an equal ratio of OBC and TOCNF was discovered to be a valuable sorbent for Cd(II) elimination (0.15 g of BCC3 composite in 50 mL of 100 mg/L Cd(II) at pH 7.0). The adsorption process was modeled using kinetic and isotherm models. The correlation coefficients for the pseudo-first and second-order kinetics are similar and closest to 1.0 based on the data. Thus, Cd(II) adsorption may involve both physio-sorption and chime-sorption. Additionally, the linear fitting of the Freundlich isotherm model demonstrated a heterogeneous and multilayer surface interaction with the greatest adsorption capability of 44 mg/g. Suggesting potential applications in environmental engineering and materials science.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-025-00610-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-025-00610-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, the oxidized biochar (OBC) derived from rice straw was prepared and homogeneously embedded into TEMPO-mediated oxidized cellulose nanofiber (TOCNF). The resulting colloidal suspension, when mixed with OBC and crosslinked via ionic interaction using branched polyethyleneimine, forms nanocomposites with promising potential. The characterization of these composites, including SEM, EDX, surface morphology, and spatial elemental composition, reveals their unique properties. The effect of adding OBC to TOCNF at different ratios is estimated by surface area analysis following the BET and BJH methods. The adsorption settings for the as-formed composites were investigated to optimize the adsorption effectiveness of the fabricated sorbents. These conditions included contact time, Cd(II) concentration, pH, and sorbent dosage. With greater adsorption effectiveness of 70% and 90% at 1 h and 2 h, the nanocomposite with an equal ratio of OBC and TOCNF was discovered to be a valuable sorbent for Cd(II) elimination (0.15 g of BCC3 composite in 50 mL of 100 mg/L Cd(II) at pH 7.0). The adsorption process was modeled using kinetic and isotherm models. The correlation coefficients for the pseudo-first and second-order kinetics are similar and closest to 1.0 based on the data. Thus, Cd(II) adsorption may involve both physio-sorption and chime-sorption. Additionally, the linear fitting of the Freundlich isotherm model demonstrated a heterogeneous and multilayer surface interaction with the greatest adsorption capability of 44 mg/g. Suggesting potential applications in environmental engineering and materials science.

氧化生物炭与氧化纤维素纳米纤维复合材料的制备及其对cd(II)的吸附性能
本文制备了稻秆氧化生物炭(OBC),并将其均匀包埋于tempo介导的氧化纤维素纳米纤维(TOCNF)中。所得到的胶体悬浮液与OBC混合,并通过支链聚乙烯亚胺的离子相互作用交联,形成具有良好潜力的纳米复合材料。这些复合材料的表征,包括SEM, EDX,表面形貌和空间元素组成,揭示了它们独特的性能。采用BET法和BJH法对TOCNF中不同比例OBC的添加效果进行了表面积分析。研究了复合材料的吸附条件,以优化其吸附效果。这些条件包括接触时间、Cd(II)浓度、pH和吸附剂用量。OBC和TOCNF配比相同的纳米复合材料在1 h和2 h的吸附效率分别为70%和90%,被发现是一种有价值的Cd(II)去除吸附剂(0.15 g BCC3复合材料在50 mL 100 mg/L Cd(II)中,pH 7.0)。采用动力学模型和等温模型模拟了吸附过程。拟一级动力学和拟二级动力学的相关系数相近,接近于1.0。因此,Cd(II)的吸附可能包括物理吸附和编钟吸附。此外,Freundlich等温线模型的线性拟合表明,吸附量最大的吸附量为44 mg/g,具有非均质和多层表面相互作用。建议在环境工程和材料科学方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信