Vitrification of non-meltable zeolitic-imidazolate frameworks†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mohamed. A. Ali, Zhihua Qiao, Wessel. M. W. Winters, Biao Cai, Moushira. A. Mohamed, Yanfei Zhang, Xiaofeng Liu, Yuanzheng Yue and Jianrong Qiu
{"title":"Vitrification of non-meltable zeolitic-imidazolate frameworks†","authors":"Mohamed. A. Ali, Zhihua Qiao, Wessel. M. W. Winters, Biao Cai, Moushira. A. Mohamed, Yanfei Zhang, Xiaofeng Liu, Yuanzheng Yue and Jianrong Qiu","doi":"10.1039/D4QM00971A","DOIUrl":null,"url":null,"abstract":"<p >The decomposition of porous zeolitic-imidazolate frameworks (ZIFs) poses a significant challenge in discovering new melt-quenched ZIF glasses characterized by high porosity. This challenge has sparked tremendous interest among scientists, driving the pursuit of innovative methods to vitrify non-meltable ZIFs for various applications. Herein, we show a universal approach for synthesizing glasses and foams from non-meltable and porous ZIFs, such as 2D ZIF-7 and 3D ZIF-8, which stand as the most promising porous materials of the ZIF family. This approach is based on the combination of liquid-mediated sequential structure perturbation and post-heat treatment, yielding a variety of highly microporous ZIF foams like glass. The synthesized ZIF foams exhibit superior gas adsorption capacities compared to melt-quenched ones. The as-fabricated membranes based on ZIF foams demonstrate ultrahigh H<small><sub>2</sub></small> permeance and good H<small><sub>2</sub></small>/CH<small><sub>4</sub></small> selectivity. In comparison to the melt-quenching technique, our structural perturbation strategy allows for the synthesis of a significantly greater quantity of glasses and foams from a single batch. It greatly broadens the composition range of ZIFs for glass and foam formation. Consequently, this study holds significant potential for upscaling the synthesis of microporous ZIF foams like glass to address a diverse array of applications such as energy storage, gas sorption and separation. Our work provides insight into the formation mechanism of non-melt-quenched glasses.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 6","pages":" 1031-1042"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00971a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The decomposition of porous zeolitic-imidazolate frameworks (ZIFs) poses a significant challenge in discovering new melt-quenched ZIF glasses characterized by high porosity. This challenge has sparked tremendous interest among scientists, driving the pursuit of innovative methods to vitrify non-meltable ZIFs for various applications. Herein, we show a universal approach for synthesizing glasses and foams from non-meltable and porous ZIFs, such as 2D ZIF-7 and 3D ZIF-8, which stand as the most promising porous materials of the ZIF family. This approach is based on the combination of liquid-mediated sequential structure perturbation and post-heat treatment, yielding a variety of highly microporous ZIF foams like glass. The synthesized ZIF foams exhibit superior gas adsorption capacities compared to melt-quenched ones. The as-fabricated membranes based on ZIF foams demonstrate ultrahigh H2 permeance and good H2/CH4 selectivity. In comparison to the melt-quenching technique, our structural perturbation strategy allows for the synthesis of a significantly greater quantity of glasses and foams from a single batch. It greatly broadens the composition range of ZIFs for glass and foam formation. Consequently, this study holds significant potential for upscaling the synthesis of microporous ZIF foams like glass to address a diverse array of applications such as energy storage, gas sorption and separation. Our work provides insight into the formation mechanism of non-melt-quenched glasses.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信