Adaptive Neural Network Finite-Time Event Triggered Intelligent Control for Stochastic Nonlinear Systems With Time-Varying Constraints

Jia Liu;Jiapeng Liu;Qing-Guo Wang;Jinpeng Yu
{"title":"Adaptive Neural Network Finite-Time Event Triggered Intelligent Control for Stochastic Nonlinear Systems With Time-Varying Constraints","authors":"Jia Liu;Jiapeng Liu;Qing-Guo Wang;Jinpeng Yu","doi":"10.1109/TAI.2024.3497913","DOIUrl":null,"url":null,"abstract":"Finite-time command-filter event-trigger control based on adaptive neural network is presented in this article for a class of output-feedback stochastic nonlinear system (SNS) with output time-varying constraints and unmeasured states. The adaptive neural network combined with backstepping is utilized to approximate the unknown nonlinear functions of the system. The finite-time command-filter is employed to reduce the difficulty of complex calculation caused by backstepping technique. An adaptive observer is developed to estimate unmeasured states, and a controller is designed to be triggered only when the event-triggered condition is met. The time-varying barrier Lyapunov function is utilized to ensure the output time-varying constraint. The control method proposed in this article not only guarantees the finite-time stability of the system but also meets the output constraint. The effectiveness of the method is demonstrated on the ship maneuvering system with three degrees of freedom.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 3","pages":"773-779"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10752919/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finite-time command-filter event-trigger control based on adaptive neural network is presented in this article for a class of output-feedback stochastic nonlinear system (SNS) with output time-varying constraints and unmeasured states. The adaptive neural network combined with backstepping is utilized to approximate the unknown nonlinear functions of the system. The finite-time command-filter is employed to reduce the difficulty of complex calculation caused by backstepping technique. An adaptive observer is developed to estimate unmeasured states, and a controller is designed to be triggered only when the event-triggered condition is met. The time-varying barrier Lyapunov function is utilized to ensure the output time-varying constraint. The control method proposed in this article not only guarantees the finite-time stability of the system but also meets the output constraint. The effectiveness of the method is demonstrated on the ship maneuvering system with three degrees of freedom.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信