Semisupervised Breast MRI Density Segmentation Integrating Fine and Rough Annotations

Tianyu Xie;Yue Sun;Hongxu Yang;Shuo Li;Jinhong Song;Qimin Yang;Hao Chen;Mingxiang Wu;Tao Tan
{"title":"Semisupervised Breast MRI Density Segmentation Integrating Fine and Rough Annotations","authors":"Tianyu Xie;Yue Sun;Hongxu Yang;Shuo Li;Jinhong Song;Qimin Yang;Hao Chen;Mingxiang Wu;Tao Tan","doi":"10.1109/TAI.2024.3491693","DOIUrl":null,"url":null,"abstract":"This article introduces an enhanced teacher–student model featuring a novel Vnet architecture that integrates high-pass and low-pass filters to improve the segmentation of breast magnetic resonance imaging (MRI) images. The model effectively utilizes finely annotated, roughly annotated, and unannotated data to achieve precise breast tissue density segmentation. The teacher–student framework incorporates three specialized Vnet networks, each tailored to different types of annotations. By integrating cosine contrast loss functions between finely and roughly annotated models, and innovatively applying high-pass and low-pass filters within the Vnet architecture, the segmentation performance is significantly enhanced. This hybrid filtering approach enables the model to capture both fine-grained and coarse structural details, leading to more accurate segmentation across various MRI image datasets. Experimental results demonstrate the superiority of the proposed method, achieving Dice values of 0.833 on the finely annotated Shenzhen dataset and 0.780 on the Duke dataset, using 15 finely annotated, 15 roughly annotated, and 58 unlabeled samples provided by Shenzhen People's Hospital. These findings underscore its potential clinical application in breast density assessment.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 3","pages":"690-699"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10750144/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces an enhanced teacher–student model featuring a novel Vnet architecture that integrates high-pass and low-pass filters to improve the segmentation of breast magnetic resonance imaging (MRI) images. The model effectively utilizes finely annotated, roughly annotated, and unannotated data to achieve precise breast tissue density segmentation. The teacher–student framework incorporates three specialized Vnet networks, each tailored to different types of annotations. By integrating cosine contrast loss functions between finely and roughly annotated models, and innovatively applying high-pass and low-pass filters within the Vnet architecture, the segmentation performance is significantly enhanced. This hybrid filtering approach enables the model to capture both fine-grained and coarse structural details, leading to more accurate segmentation across various MRI image datasets. Experimental results demonstrate the superiority of the proposed method, achieving Dice values of 0.833 on the finely annotated Shenzhen dataset and 0.780 on the Duke dataset, using 15 finely annotated, 15 roughly annotated, and 58 unlabeled samples provided by Shenzhen People's Hospital. These findings underscore its potential clinical application in breast density assessment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信