Traffexplainer: A Framework Toward GNN-Based Interpretable Traffic Prediction

Lingbai Kong;Hanchen Yang;Wengen Li;Yichao Zhang;Jihong Guan;Shuigeng Zhou
{"title":"Traffexplainer: A Framework Toward GNN-Based Interpretable Traffic Prediction","authors":"Lingbai Kong;Hanchen Yang;Wengen Li;Yichao Zhang;Jihong Guan;Shuigeng Zhou","doi":"10.1109/TAI.2024.3459857","DOIUrl":null,"url":null,"abstract":"With the increasing traffic congestion problems in metropolises, traffic prediction plays an essential role in intelligent traffic systems. Notably, various deep learning models, especially graph neural networks (GNNs), achieve state-of-the-art performance in traffic prediction tasks but still lack interpretability. To interpret the critical information abstracted by traffic prediction models, we proposed a flexible framework termed Traffexplainer toward GNN-based interpretable traffic prediction. Traffexplainer is applicable to a wide range of GNNs without making any modifications to the original model structure. The framework consists of the GNN-based traffic prediction model and the perturbation-based hierarchical interpretation generator. Specifically, the hierarchical spatial mask and temporal mask are introduced to perturb the prediction model by modulating the values of input data. Then the prediction losses are backward propagated to the masks, which can identify the most critical features for traffic prediction, and further improve the prediction performance. We deploy the framework with five representative GNN-based traffic prediction models and analyze their prediction and interpretation performance on three real-world traffic flow datasets. The experiment results demonstrate that our framework can generate effective and faithful interpretations for GNN-based traffic prediction models, and also improve the prediction performance. The code will be publicly available at <uri>https://github.com/lingbai-kong/Traffexplainer</uri>.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 3","pages":"559-573"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680338","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10680338/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing traffic congestion problems in metropolises, traffic prediction plays an essential role in intelligent traffic systems. Notably, various deep learning models, especially graph neural networks (GNNs), achieve state-of-the-art performance in traffic prediction tasks but still lack interpretability. To interpret the critical information abstracted by traffic prediction models, we proposed a flexible framework termed Traffexplainer toward GNN-based interpretable traffic prediction. Traffexplainer is applicable to a wide range of GNNs without making any modifications to the original model structure. The framework consists of the GNN-based traffic prediction model and the perturbation-based hierarchical interpretation generator. Specifically, the hierarchical spatial mask and temporal mask are introduced to perturb the prediction model by modulating the values of input data. Then the prediction losses are backward propagated to the masks, which can identify the most critical features for traffic prediction, and further improve the prediction performance. We deploy the framework with five representative GNN-based traffic prediction models and analyze their prediction and interpretation performance on three real-world traffic flow datasets. The experiment results demonstrate that our framework can generate effective and faithful interpretations for GNN-based traffic prediction models, and also improve the prediction performance. The code will be publicly available at https://github.com/lingbai-kong/Traffexplainer.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信