Distributional forecasting of electricity DART spreads with a covariate-dependent mixture model

IF 13.6 2区 经济学 Q1 ECONOMICS
Anthony Forgetta , Frédéric Godin , Maciej Augustyniak
{"title":"Distributional forecasting of electricity DART spreads with a covariate-dependent mixture model","authors":"Anthony Forgetta ,&nbsp;Frédéric Godin ,&nbsp;Maciej Augustyniak","doi":"10.1016/j.eneco.2025.108332","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a covariate-dependent mixture model to describe the behavior of electricity DART spreads, which are differentials between day-ahead and real-time prices of electricity. The model includes three regimes: a regular DART regime, a positive spike regime, and a negative spike regime. The model exhibits sufficient flexibility to allow covariates impacting both the frequency and severity of DART spread spikes, and to reproduce salient stylized facts of DART spread dynamics. The covariates considered include forecasts for load, weather, and natural gas prices. The application of our model on data from the Long Island zone of the NYISO (New York Independent System Operator) exhibits a satisfactory fit to the data. Numerical experiments reveal that including covariates in the severity component of the model is crucial, while mild additional performance is obtained with their inclusion in the frequency component. Furthermore, neural network-based quantile regression benchmarks are unable to improve performance over our mixture model.</div></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"144 ","pages":"Article 108332"},"PeriodicalIF":13.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140988325001562","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a covariate-dependent mixture model to describe the behavior of electricity DART spreads, which are differentials between day-ahead and real-time prices of electricity. The model includes three regimes: a regular DART regime, a positive spike regime, and a negative spike regime. The model exhibits sufficient flexibility to allow covariates impacting both the frequency and severity of DART spread spikes, and to reproduce salient stylized facts of DART spread dynamics. The covariates considered include forecasts for load, weather, and natural gas prices. The application of our model on data from the Long Island zone of the NYISO (New York Independent System Operator) exhibits a satisfactory fit to the data. Numerical experiments reveal that including covariates in the severity component of the model is crucial, while mild additional performance is obtained with their inclusion in the frequency component. Furthermore, neural network-based quantile regression benchmarks are unable to improve performance over our mixture model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Economics
Energy Economics ECONOMICS-
CiteScore
18.60
自引率
12.50%
发文量
524
期刊介绍: Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信