Hyperbolic graph attention network fusing long-context for technical keyphrase extraction

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yushan Zhao , Kuan-Ching Li , Shunxiang Zhang , Tongzhou Ye
{"title":"Hyperbolic graph attention network fusing long-context for technical keyphrase extraction","authors":"Yushan Zhao ,&nbsp;Kuan-Ching Li ,&nbsp;Shunxiang Zhang ,&nbsp;Tongzhou Ye","doi":"10.1016/j.inffus.2025.103061","DOIUrl":null,"url":null,"abstract":"<div><div>Technical Keyphrase Extraction (TKE) is crucial for summarizing the core content of scientific and technical texts. Existing keyphrase extraction models typically focus on calculating phrase and sentence correlations that can limit their ability to understand long contexts and uncover hierarchical semantic information, leading to biased results. To address these limitations, a hyperbolic graph technical attention network is designed and applied to a novel unsupervised Technical KeyPhrase Extraction (TKPE) model, achieving the fusion of complex hierarchical semantic representations and long-context information by constructing global embeddings of the technical text in hyperbolic space for high-fidelity representation with minimal dimensions. A technical attention score is calculated based on technical terminology degree and hierarchical relevance to guide the extraction process. Additionally, the network utilizes geodesic variations between embedded nodes to reveal meaningful hierarchical clustering relationships, thus enabling semantic structural understanding of technical text data and efficient extraction of the most relevant technical keyphrases. This work exploits the long-context understanding capability of large language models to generate candidate phrases guided by an effective prompt template that reduces information loss when importing candidate phrases in a hyperbolic graph attention network. Experiments performed on benchmark technical datasets demonstrate that the proposed model outperforms recent state-of-the-art baseline keyphrase extraction models.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"120 ","pages":"Article 103061"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525001344","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Technical Keyphrase Extraction (TKE) is crucial for summarizing the core content of scientific and technical texts. Existing keyphrase extraction models typically focus on calculating phrase and sentence correlations that can limit their ability to understand long contexts and uncover hierarchical semantic information, leading to biased results. To address these limitations, a hyperbolic graph technical attention network is designed and applied to a novel unsupervised Technical KeyPhrase Extraction (TKPE) model, achieving the fusion of complex hierarchical semantic representations and long-context information by constructing global embeddings of the technical text in hyperbolic space for high-fidelity representation with minimal dimensions. A technical attention score is calculated based on technical terminology degree and hierarchical relevance to guide the extraction process. Additionally, the network utilizes geodesic variations between embedded nodes to reveal meaningful hierarchical clustering relationships, thus enabling semantic structural understanding of technical text data and efficient extraction of the most relevant technical keyphrases. This work exploits the long-context understanding capability of large language models to generate candidate phrases guided by an effective prompt template that reduces information loss when importing candidate phrases in a hyperbolic graph attention network. Experiments performed on benchmark technical datasets demonstrate that the proposed model outperforms recent state-of-the-art baseline keyphrase extraction models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信