{"title":"Cutting-Edge Optimization Strategies and In Situ Characterization Techniques for Urea Oxidation Reaction Catalysts: A Comprehensive Review","authors":"Jagadis Gautam, Seul-Yi Lee, Soo-Jin Park","doi":"10.1002/aenm.202406047","DOIUrl":null,"url":null,"abstract":"Urea electrolysis presents an eco-friendly, cost-effective method for hydrogen (H<sub>2</sub>) production and pollution control. However, its efficiency is limited by a slow 6-electron transfer process, necessitating advanced electrocatalysts to accelerate the urea oxidation reaction (UOR) and moderate overpotential, thereby cutting energy losses. Developing efficient, affordable electrocatalysts is vital for practical urea electrolysis (UE) and improving UOR kinetics. Optimizing UOR electrocatalysts requires creating highly active sites, enhancing electrical conductivity, and manipulating electronic structures for improved electron transfer and intermediate binding affinities. This review explores recent advances in UOR catalyst design, focusing on transition metal-based catalysts, including nanostructures, phases, defects, heterostructures, alloys, and composites. It underscores the importance of understanding structure-performance relationships, surface reconstruction phenomena, and mechanisms through in situ characterization. Additionally, it critically assesses the challenges in UOR catalysis and provides insights for developing high-performance electrocatalysts. The review finishes with perspectives on future research directions for green hydrogen generation via urea electrolysis.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"29 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202406047","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Urea electrolysis presents an eco-friendly, cost-effective method for hydrogen (H2) production and pollution control. However, its efficiency is limited by a slow 6-electron transfer process, necessitating advanced electrocatalysts to accelerate the urea oxidation reaction (UOR) and moderate overpotential, thereby cutting energy losses. Developing efficient, affordable electrocatalysts is vital for practical urea electrolysis (UE) and improving UOR kinetics. Optimizing UOR electrocatalysts requires creating highly active sites, enhancing electrical conductivity, and manipulating electronic structures for improved electron transfer and intermediate binding affinities. This review explores recent advances in UOR catalyst design, focusing on transition metal-based catalysts, including nanostructures, phases, defects, heterostructures, alloys, and composites. It underscores the importance of understanding structure-performance relationships, surface reconstruction phenomena, and mechanisms through in situ characterization. Additionally, it critically assesses the challenges in UOR catalysis and provides insights for developing high-performance electrocatalysts. The review finishes with perspectives on future research directions for green hydrogen generation via urea electrolysis.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.