Review on Recent Progress and Challenges in Laser-Structuring of Electrodes for Lithium-Ion Batteries

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Emma Nikam, Roshan Mangal Bhattarai, Jonas Hereijgers
{"title":"Review on Recent Progress and Challenges in Laser-Structuring of Electrodes for Lithium-Ion Batteries","authors":"Emma Nikam, Roshan Mangal Bhattarai, Jonas Hereijgers","doi":"10.1002/aenm.202406021","DOIUrl":null,"url":null,"abstract":"The traditional lithium-ion battery (LIB) electrode has reached its limitations in terms of energy density and fast charging capabilities. To enable implementation in electric vehicles and other applications, 3D structuring is a method frequently proposed to allow for performance enhancement due to an increase in electrode surface area. Due to the decrease in lithium ion diffusion pathways, potential for application in thick electrodes exists, allowing further enhancement of energy density. Laser ablation is a promising manufacturing technique for the fabrication of 3D structured electrodes due to its ease of implementation in the existing electrode manufacturing process, as well as its flexibility and precision. This review details the main process parameters of the laser ablation process and their influence on the process efficiency and quality of generated structures. It further summarizes recent progress in finding the optimal electrode structure for both cathode and anode, and discusses the opinions on relative importance of cathode v. anode structuring. Lastly, current progress and challenges for the implementation in the battery manufacturing process are detailed, providing techniques for the upscaling and increase of belt speeds.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"31 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202406021","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional lithium-ion battery (LIB) electrode has reached its limitations in terms of energy density and fast charging capabilities. To enable implementation in electric vehicles and other applications, 3D structuring is a method frequently proposed to allow for performance enhancement due to an increase in electrode surface area. Due to the decrease in lithium ion diffusion pathways, potential for application in thick electrodes exists, allowing further enhancement of energy density. Laser ablation is a promising manufacturing technique for the fabrication of 3D structured electrodes due to its ease of implementation in the existing electrode manufacturing process, as well as its flexibility and precision. This review details the main process parameters of the laser ablation process and their influence on the process efficiency and quality of generated structures. It further summarizes recent progress in finding the optimal electrode structure for both cathode and anode, and discusses the opinions on relative importance of cathode v. anode structuring. Lastly, current progress and challenges for the implementation in the battery manufacturing process are detailed, providing techniques for the upscaling and increase of belt speeds.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信