A high-frequency artificial nerve based on homogeneously integrated organic electrochemical transistors

IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shijie Wang, Yichang Wang, Xinmei Cai, Bingjun Wang, Chao Zhao, Guangjiu Pan, Constantin Harder, Yusuf Bulut, Beichen Zhang, Sen Zhang, Yuxin Kong, Kexin Huang, Bomin Xie, Peter Müller-Buschbaum, Stephan V. Roth, Lin Yang, Yuxiang Li, Yong Han, Gang Bao, Wei Ma
{"title":"A high-frequency artificial nerve based on homogeneously integrated organic electrochemical transistors","authors":"Shijie Wang, Yichang Wang, Xinmei Cai, Bingjun Wang, Chao Zhao, Guangjiu Pan, Constantin Harder, Yusuf Bulut, Beichen Zhang, Sen Zhang, Yuxin Kong, Kexin Huang, Bomin Xie, Peter Müller-Buschbaum, Stephan V. Roth, Lin Yang, Yuxiang Li, Yong Han, Gang Bao, Wei Ma","doi":"10.1038/s41928-025-01357-7","DOIUrl":null,"url":null,"abstract":"Artificial nerves that are capable of sensing, processing and memory functions at bio-realistic frequencies are of potential use in nerve repair and brain–machine interfaces. n-type organic electrochemical transistors are a possible building block for artificial nerves, as their positive-potential-triggered potentiation behaviour can mimic that of biological cells. However, the devices are limited by weak ionic and electronic transport and storage properties, which leads to poor volatile and non-volatile performance and, in particular, a slow response. We describe a high-frequency artificial nerve based on homogeneously integrated organic electrochemical transistors. We fabricate a vertical n-type organic electrochemical transistor with a gradient-intermixed bicontinuous structure that simultaneously enhances the ionic and electronic transport and the ion storage. The transistor exhibits a volatile response of 27 μs, a 100-kHz non-volatile memory frequency and a long state-retention time. Our integrated artificial nerve, which contains vertical n-type and p-type organic electrochemical transistors, offers sensing, processing and memory functions in the high-frequency domain. We also show that the artificial nerve can be integrated into animal models with compromised neural functions and that it can mimic basic conditioned reflex behaviour. An artificial nerve that is based on a vertical n-type organic electrochemical transistor with a gradient-intermixed bicontinuous structure can operate at high frequencies and mimic basic conditioned reflex behaviour in animals.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 3","pages":"254-266"},"PeriodicalIF":33.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-025-01357-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial nerves that are capable of sensing, processing and memory functions at bio-realistic frequencies are of potential use in nerve repair and brain–machine interfaces. n-type organic electrochemical transistors are a possible building block for artificial nerves, as their positive-potential-triggered potentiation behaviour can mimic that of biological cells. However, the devices are limited by weak ionic and electronic transport and storage properties, which leads to poor volatile and non-volatile performance and, in particular, a slow response. We describe a high-frequency artificial nerve based on homogeneously integrated organic electrochemical transistors. We fabricate a vertical n-type organic electrochemical transistor with a gradient-intermixed bicontinuous structure that simultaneously enhances the ionic and electronic transport and the ion storage. The transistor exhibits a volatile response of 27 μs, a 100-kHz non-volatile memory frequency and a long state-retention time. Our integrated artificial nerve, which contains vertical n-type and p-type organic electrochemical transistors, offers sensing, processing and memory functions in the high-frequency domain. We also show that the artificial nerve can be integrated into animal models with compromised neural functions and that it can mimic basic conditioned reflex behaviour. An artificial nerve that is based on a vertical n-type organic electrochemical transistor with a gradient-intermixed bicontinuous structure can operate at high frequencies and mimic basic conditioned reflex behaviour in animals.

Abstract Image

Abstract Image

基于均匀集成有机电化学晶体管的高频人工神经
具有生物逼真频率感知、处理和记忆功能的人工神经在神经修复和脑机接口方面具有潜在的应用前景。n型有机电化学晶体管可能是人造神经的组成部分,因为它们的正电位触发的增强行为可以模拟生物细胞的增强行为。然而,该器件受到弱离子和电子传输和存储特性的限制,这导致挥发性和非挥发性性能差,特别是响应速度慢。介绍了一种基于均匀集成有机电化学晶体管的高频人工神经。我们制造了一种垂直的n型有机电化学晶体管,它具有梯度混合双连续结构,同时增强了离子和电子的传递以及离子的存储。该晶体管的易失性响应为27 μs,非易失性存储频率为100 khz,状态保持时间长。我们的集成人工神经,包含垂直n型和p型有机电化学晶体管,在高频域具有传感、处理和记忆功能。我们还表明,人工神经可以整合到神经功能受损的动物模型中,并且可以模仿基本的条件反射行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信