Ecological and evolutionary responses of earthworm holobionts to environmental changes

Michael Opoku Adomako, Jing Wu, Fei-Hai Yu
{"title":"Ecological and evolutionary responses of earthworm holobionts to environmental changes","authors":"Michael Opoku Adomako, Jing Wu, Fei-Hai Yu","doi":"10.1093/ismejo/wraf044","DOIUrl":null,"url":null,"abstract":"Global environmental change substantially affects soil detritivores, including earthworms, impacting host-microbiota interactions and altering key soil biogeochemical processes such as litter decomposition. As microbial communities are inherently capable of rapid evolution, responses of earthworms and associated microbiota (i.e., earthworm holobionts) to global environmental change may likely involve the interplay of ecological and evolutionary processes and feedbacks. Although species-level responses of earthworms to global environmental change are well-studied, the potential ecological and evolutionary responses of earthworm holobionts to environmental change remain unexplored. Here, we provide a conceptual framework to elaborate on the complex network of earthworm host−microbiota interactions that modify their traits in response to global environmental change, jointly shaping their ecology and evolution. Based on literature, we synthesize evidence of global environmental change impacts on earthworm host-microbiota and discuss evidence of their ecological and evolutionary responses to environmental change. Lastly, we highlight the agro- and eco-system level consequences of environmental change-mediated shift in earthworm host-microbiota functions. Soil legacies of environmental change have cascading detrimental impacts on the abundance, diversity, and functional dynamics of earthworm host-microbiota interactions in agriculture and ecosystems. The primary mechanisms driving such responses of earthworm hosts and associated microbial communities to environmental change include altered litter quality and host dietary preferences, competitive interactions and exclusion, habitat homogenization, and a shift in soil physicochemical and biological processes. Therefore, advancing knowledge of the intricate animal-microorganism interactions is crucial for belowground biodiversity management in a changing global environment.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"192 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global environmental change substantially affects soil detritivores, including earthworms, impacting host-microbiota interactions and altering key soil biogeochemical processes such as litter decomposition. As microbial communities are inherently capable of rapid evolution, responses of earthworms and associated microbiota (i.e., earthworm holobionts) to global environmental change may likely involve the interplay of ecological and evolutionary processes and feedbacks. Although species-level responses of earthworms to global environmental change are well-studied, the potential ecological and evolutionary responses of earthworm holobionts to environmental change remain unexplored. Here, we provide a conceptual framework to elaborate on the complex network of earthworm host−microbiota interactions that modify their traits in response to global environmental change, jointly shaping their ecology and evolution. Based on literature, we synthesize evidence of global environmental change impacts on earthworm host-microbiota and discuss evidence of their ecological and evolutionary responses to environmental change. Lastly, we highlight the agro- and eco-system level consequences of environmental change-mediated shift in earthworm host-microbiota functions. Soil legacies of environmental change have cascading detrimental impacts on the abundance, diversity, and functional dynamics of earthworm host-microbiota interactions in agriculture and ecosystems. The primary mechanisms driving such responses of earthworm hosts and associated microbial communities to environmental change include altered litter quality and host dietary preferences, competitive interactions and exclusion, habitat homogenization, and a shift in soil physicochemical and biological processes. Therefore, advancing knowledge of the intricate animal-microorganism interactions is crucial for belowground biodiversity management in a changing global environment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信