Yi-Jing Li, Zhe Sun, Peiyuan Li, Kai Xing, Yuan Chang, Xiumeng Hua, Xiao Chen, Han Mo, Shun Liu, Yixuan Sheng, Yue Zhang, Mengda Xu, Qian Zhao, Ningning Zhang, Jiangping Song
{"title":"In Situ Biomimetic Glycocalyx Layer Protects Endothelial Damage in Xenotransplantation","authors":"Yi-Jing Li, Zhe Sun, Peiyuan Li, Kai Xing, Yuan Chang, Xiumeng Hua, Xiao Chen, Han Mo, Shun Liu, Yixuan Sheng, Yue Zhang, Mengda Xu, Qian Zhao, Ningning Zhang, Jiangping Song","doi":"10.1021/acs.nanolett.5c00459","DOIUrl":null,"url":null,"abstract":"Xenotransplantation offers a transformative solution to the global organ shortage crisis. However, the survival of xenografts remains limited despite various proposed strategies. In this study, we present an endothelial cell protection strategy that extends graft survival through the <i>in situ</i> construction of biomimetic glycan-enriched nanofibers. These biomimetic glycan-enriched molecules specifically target integrin α<sub>v</sub>β<sub>3</sub> and form a polysaccharide-structured nanofiber network on the vascular endothelial surface. This network protects endothelial cells without compromising their normal physiological functions. The constructed biomimetic glycan-enriched layer significantly increased the xenograft survival by 1.64-fold compared to the untreated groups. This work introduces a novel strategy to enhance the survival of heart xenografts.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"38 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00459","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Xenotransplantation offers a transformative solution to the global organ shortage crisis. However, the survival of xenografts remains limited despite various proposed strategies. In this study, we present an endothelial cell protection strategy that extends graft survival through the in situ construction of biomimetic glycan-enriched nanofibers. These biomimetic glycan-enriched molecules specifically target integrin αvβ3 and form a polysaccharide-structured nanofiber network on the vascular endothelial surface. This network protects endothelial cells without compromising their normal physiological functions. The constructed biomimetic glycan-enriched layer significantly increased the xenograft survival by 1.64-fold compared to the untreated groups. This work introduces a novel strategy to enhance the survival of heart xenografts.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.