Glen T. Nwaila, Derek H. Rose, Hartwig E. Frimmel, Yousef Ghorbani
{"title":"An Integrated Geodata Science Workflow for Resource Estimation: A Case Study from the Merensky Reef, Bushveld Complex","authors":"Glen T. Nwaila, Derek H. Rose, Hartwig E. Frimmel, Yousef Ghorbani","doi":"10.1007/s11053-025-10471-4","DOIUrl":null,"url":null,"abstract":"<p>Integrated workflows for mineral resource estimation from exploration to mining must be able to process typical geodata (e.g., borehole data), perform data engineering (e.g., geodomaining), and spatial modeling (e.g., block modeling). Several methods exist, however they can only handle individual subtasks, and are either semi or fully automatable. Thus, an integrated workflow has not been established, which is needed to handle bigger geodata sets, perform remote monitoring, or provide short-term operational feedback. Bigger (more voluminous, higher velocity and higher dimensional) geodata sets are both emerging and anticipated in future exploration and mining operations, necessitating a geodata science counterpart to traditional, segregated, and routinely manual geostatistical workflows for resource estimation. In this paper, we demonstrate a prototype that integrates various data processing, pointwise geodomaining, domain boundary delineation, combinatorics-based visualization, and geostatistical modeling methods to create a modern resource estimation workflow. For the purpose of geodomaining, we employed a fully semi-automated, machine learning-based workflow to perform spatially aware geodomaining. We demonstrate the effectiveness of the method using actual mining data. This workflow makes use of methods that are properly geodata science-based as opposed to merely data science-based (explicitly leverages the spatial aspects of data). The workflow achieves these benefits through the use of objective metrics and semi-automated modeling practices as part of geodata science (e.g., cross-validation), enabling high automation potential, practitioner-agnosticism, replicability, and objectivity. We also evaluate the integrated resource estimation workflow using a real dataset from the platiniferous Merensky Reef of the Bushveld Complex (South Africa) known for its high nugget effect.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"38 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-025-10471-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated workflows for mineral resource estimation from exploration to mining must be able to process typical geodata (e.g., borehole data), perform data engineering (e.g., geodomaining), and spatial modeling (e.g., block modeling). Several methods exist, however they can only handle individual subtasks, and are either semi or fully automatable. Thus, an integrated workflow has not been established, which is needed to handle bigger geodata sets, perform remote monitoring, or provide short-term operational feedback. Bigger (more voluminous, higher velocity and higher dimensional) geodata sets are both emerging and anticipated in future exploration and mining operations, necessitating a geodata science counterpart to traditional, segregated, and routinely manual geostatistical workflows for resource estimation. In this paper, we demonstrate a prototype that integrates various data processing, pointwise geodomaining, domain boundary delineation, combinatorics-based visualization, and geostatistical modeling methods to create a modern resource estimation workflow. For the purpose of geodomaining, we employed a fully semi-automated, machine learning-based workflow to perform spatially aware geodomaining. We demonstrate the effectiveness of the method using actual mining data. This workflow makes use of methods that are properly geodata science-based as opposed to merely data science-based (explicitly leverages the spatial aspects of data). The workflow achieves these benefits through the use of objective metrics and semi-automated modeling practices as part of geodata science (e.g., cross-validation), enabling high automation potential, practitioner-agnosticism, replicability, and objectivity. We also evaluate the integrated resource estimation workflow using a real dataset from the platiniferous Merensky Reef of the Bushveld Complex (South Africa) known for its high nugget effect.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.