Noé Vandevoorde, Igor Turine, Alodie Blondel, Yannick Agnan
{"title":"Living cover crops reduce pesticide residues in agricultural soil","authors":"Noé Vandevoorde, Igor Turine, Alodie Blondel, Yannick Agnan","doi":"10.5194/egusphere-2025-943","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Living cover crops play a key role in reducing nitrogen leaching to groundwater during fallow periods. They also enhance soil microbial activity through root exudates, improving soil structure and increasing organic matter content. While the degradation of pesticides in soil relies primarily on microbial biodegradation, the extent to which cover crops influence this degradation remains poorly quantified. In this paper we (1) monitored pesticide residue levels in soil and soil solution under two different cover crop densities and (2) correlated the observed reductions with physicochemical properties of the active substances. Our results show that thin cover crops (0.4 t<sub>DM </sub>ha<sup>-1</sup>) reduce pesticide leaching 80 days after sowing compared to bare soil, retaining the residues in the microbiologically active topsoil. In addition, well-developed cover crops (1 t<sub>DM</sub> ha<sup>-1</sup>) reduce soil pesticide contents by more than 33 % for compounds with low to high water solubility (s ≤ 1400 mg L<sup>-1</sup>) and low to moderate soil mobility (K<sub>oc</sub> ≥ 160 mL g<sup>-1</sup>). This effect is probably due to enhanced pesticide degradation of the retained pesticide in the rhizosphere. These results confirm previous studies on individual compounds, individual cover crop types and individual soil compartments, while providing new thresholds for physicochemical properties associated with significant pesticide degradation. By directly enhancing pesticide degradation within the soil compartment where pesticides are applied, cover crops limit their transfer to other environmental compartments, particularly groundwater.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"56 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2025-943","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Living cover crops play a key role in reducing nitrogen leaching to groundwater during fallow periods. They also enhance soil microbial activity through root exudates, improving soil structure and increasing organic matter content. While the degradation of pesticides in soil relies primarily on microbial biodegradation, the extent to which cover crops influence this degradation remains poorly quantified. In this paper we (1) monitored pesticide residue levels in soil and soil solution under two different cover crop densities and (2) correlated the observed reductions with physicochemical properties of the active substances. Our results show that thin cover crops (0.4 tDM ha-1) reduce pesticide leaching 80 days after sowing compared to bare soil, retaining the residues in the microbiologically active topsoil. In addition, well-developed cover crops (1 tDM ha-1) reduce soil pesticide contents by more than 33 % for compounds with low to high water solubility (s ≤ 1400 mg L-1) and low to moderate soil mobility (Koc ≥ 160 mL g-1). This effect is probably due to enhanced pesticide degradation of the retained pesticide in the rhizosphere. These results confirm previous studies on individual compounds, individual cover crop types and individual soil compartments, while providing new thresholds for physicochemical properties associated with significant pesticide degradation. By directly enhancing pesticide degradation within the soil compartment where pesticides are applied, cover crops limit their transfer to other environmental compartments, particularly groundwater.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).