Analysis of impact of operating conditions on lithium‐ion battery performance using in silico design of experiments

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-03-10 DOI:10.1002/aic.18815
Arun Muthukkumaran, Raghunathan Rengaswamy
{"title":"Analysis of impact of operating conditions on lithium‐ion battery performance using in silico design of experiments","authors":"Arun Muthukkumaran, Raghunathan Rengaswamy","doi":"10.1002/aic.18815","DOIUrl":null,"url":null,"abstract":"Lithium‐ion battery technology has established itself as a reliable energy storage mechanism over the past decade. Nevertheless, it faces challenges, including safety concerns, prolonged charging duration, and capacity fade. A significant cause of these issues is the degradation reactions within the battery, which are influenced by conditions such as ambient temperature, charging rate, and voltage. In order to understand the performance of lithium‐ion batteries at different operating conditions, a reaction engineering‐based electrothermal battery model was developed. Design of experiments (DoE) methodology was employed to plan and analyze in silico experiments. This approach modeled battery degradation parameters based on operating conditions, enhancing the understanding of their impact on battery health and facilitating the identification of optimal operating parameters. Results showed that the model could generalize for different lithium‐ion battery systems, and the DoE approach provided insights into the performance of battery systems under various operating conditions.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"122 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18815","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium‐ion battery technology has established itself as a reliable energy storage mechanism over the past decade. Nevertheless, it faces challenges, including safety concerns, prolonged charging duration, and capacity fade. A significant cause of these issues is the degradation reactions within the battery, which are influenced by conditions such as ambient temperature, charging rate, and voltage. In order to understand the performance of lithium‐ion batteries at different operating conditions, a reaction engineering‐based electrothermal battery model was developed. Design of experiments (DoE) methodology was employed to plan and analyze in silico experiments. This approach modeled battery degradation parameters based on operating conditions, enhancing the understanding of their impact on battery health and facilitating the identification of optimal operating parameters. Results showed that the model could generalize for different lithium‐ion battery systems, and the DoE approach provided insights into the performance of battery systems under various operating conditions.
用硅片实验设计分析操作条件对锂离子电池性能的影响
在过去的十年中,锂离子电池技术已经成为一种可靠的能量存储机制。然而,它也面临着一些挑战,包括安全问题、充电时间延长和容量衰减。这些问题的一个重要原因是电池内部的降解反应,这受到环境温度、充电速率和电压等条件的影响。为了了解锂离子电池在不同工况下的性能,建立了基于反应工程的电热电池模型。采用实验设计(DoE)方法对硅片实验进行规划和分析。该方法基于运行条件对电池退化参数进行建模,增强了对其对电池健康影响的理解,并促进了最佳运行参数的识别。结果表明,该模型可以推广到不同的锂离子电池系统,并且DoE方法提供了对不同操作条件下电池系统性能的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信