{"title":"An enhanced framework for local genetic correlation analysis","authors":"Yuying Li, Yudi Pawitan, Xia Shen","doi":"10.1038/s41588-025-02123-3","DOIUrl":null,"url":null,"abstract":"<p>Genetic correlation is a key parameter in the joint genetic model of complex traits, but it is usually estimated on a global genomic scale. Understanding local genetic correlations provides more detailed insight into the shared genetic architecture of complex traits. However, a state-of-the-art tool for local genetic correlation analysis, LAVA, is prone to false inference. Here we extend the high-definition likelihood (HDL) method to a local version, HDL-L, which performs genetic correlation analysis in small, approximately independent linkage disequilibrium blocks. HDL-L allows a more granular estimation of genetic variances and covariances. Simulations show that HDL-L offers more consistent heritability estimates and more efficient genetic correlation estimates compared with LAVA. HDL-L demonstrated robust performance across a wide range of simulations conducted under varying parameter settings. In the analysis of 30 phenotypes from the UK Biobank, HDL-L identified 109 significant local genetic correlations and showed a notable computational advantage. HDL-L proves to be a powerful tool for uncovering the detailed genetic landscape that underlies complex human traits, offering both accuracy and computational efficiency.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"1 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-025-02123-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic correlation is a key parameter in the joint genetic model of complex traits, but it is usually estimated on a global genomic scale. Understanding local genetic correlations provides more detailed insight into the shared genetic architecture of complex traits. However, a state-of-the-art tool for local genetic correlation analysis, LAVA, is prone to false inference. Here we extend the high-definition likelihood (HDL) method to a local version, HDL-L, which performs genetic correlation analysis in small, approximately independent linkage disequilibrium blocks. HDL-L allows a more granular estimation of genetic variances and covariances. Simulations show that HDL-L offers more consistent heritability estimates and more efficient genetic correlation estimates compared with LAVA. HDL-L demonstrated robust performance across a wide range of simulations conducted under varying parameter settings. In the analysis of 30 phenotypes from the UK Biobank, HDL-L identified 109 significant local genetic correlations and showed a notable computational advantage. HDL-L proves to be a powerful tool for uncovering the detailed genetic landscape that underlies complex human traits, offering both accuracy and computational efficiency.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution