Modes of Notch signalling in development and disease

IF 81.3 1区 生物学 Q1 CELL BIOLOGY
Sarah J. Bray, Anna Bigas
{"title":"Modes of Notch signalling in development and disease","authors":"Sarah J. Bray, Anna Bigas","doi":"10.1038/s41580-025-00835-2","DOIUrl":null,"url":null,"abstract":"<p>Many different animal developmental and homeostatic processes rely on signalling via the highly conserved Notch pathway. Often Notch signalling has iterative roles during cell specification and differentiation, controlling not only the state of progenitor cells but also the fate and function of their progeny. Its roles continue throughout the lifespan of the organism, regulating normal tissue maintenance, as well as operating in response to damage. Consistent with such fundamental roles, the pathway has been associated with numerous diseases, including cancers. Understanding how Notch signalling is orchestrated to bring about different outcomes is challenging, given that it has many diverse functions. Classic models proposed that stochastic differences in cell states were important to polarise signalling during cell fate decisions. Subsequently, the importance of oscillatory Notch signalling was uncovered, and it became clear that it operates in different modalities depending on the regulatory inputs. With the advent of ever-more-sensitive live-imaging and quantitative approaches, it is becoming evident that differences in the dynamics, levels and architectures of Notch signalling are critical in shaping and maintaining tissues. This Review focuses on the cellular and molecular mechanisms involved in conferring different modalities on Notch pathway operations and how these enable different types of functional outcomes from pathway activation. We also discuss their dysregulation in cancer.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"15 1","pages":""},"PeriodicalIF":81.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41580-025-00835-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many different animal developmental and homeostatic processes rely on signalling via the highly conserved Notch pathway. Often Notch signalling has iterative roles during cell specification and differentiation, controlling not only the state of progenitor cells but also the fate and function of their progeny. Its roles continue throughout the lifespan of the organism, regulating normal tissue maintenance, as well as operating in response to damage. Consistent with such fundamental roles, the pathway has been associated with numerous diseases, including cancers. Understanding how Notch signalling is orchestrated to bring about different outcomes is challenging, given that it has many diverse functions. Classic models proposed that stochastic differences in cell states were important to polarise signalling during cell fate decisions. Subsequently, the importance of oscillatory Notch signalling was uncovered, and it became clear that it operates in different modalities depending on the regulatory inputs. With the advent of ever-more-sensitive live-imaging and quantitative approaches, it is becoming evident that differences in the dynamics, levels and architectures of Notch signalling are critical in shaping and maintaining tissues. This Review focuses on the cellular and molecular mechanisms involved in conferring different modalities on Notch pathway operations and how these enable different types of functional outcomes from pathway activation. We also discuss their dysregulation in cancer.

Abstract Image

Notch信号在发育和疾病中的模式
许多不同的动物发育和体内平衡过程依赖于高度保守的Notch通路。通常Notch信号在细胞分化和分化过程中具有反复作用,不仅控制祖细胞的状态,还控制其后代的命运和功能。它的作用贯穿整个生物体的生命周期,调节正常组织的维持,以及对损伤的反应。与这些基本作用相一致的是,该途径与包括癌症在内的许多疾病有关。考虑到Notch信号具有许多不同的功能,理解Notch信号如何被精心安排以带来不同的结果是具有挑战性的。经典模型提出,在细胞命运决定过程中,细胞状态的随机差异对极化信号传导很重要。随后,振荡Notch信号的重要性被发现,并且很明显,它根据调节输入以不同的方式运作。随着越来越灵敏的实时成像和定量方法的出现,越来越明显的是,Notch信号的动态、水平和结构的差异对组织的形成和维持至关重要。这篇综述的重点是Notch通路不同运作方式的细胞和分子机制,以及这些机制如何使通路激活产生不同类型的功能结果。我们还讨论了它们在癌症中的失调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Molecular Cell Biology
Nature Reviews Molecular Cell Biology 生物-细胞生物学
CiteScore
173.60
自引率
0.50%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Molecular Cell Biology is a prestigious journal that aims to be the primary source of reviews and commentaries for the scientific communities it serves. The journal strives to publish articles that are authoritative, accessible, and enriched with easily understandable figures, tables, and other display items. The goal is to provide an unparalleled service to authors, referees, and readers, and the journal works diligently to maximize the usefulness and impact of each article. Nature Reviews Molecular Cell Biology publishes a variety of article types, including Reviews, Perspectives, Comments, and Research Highlights, all of which are relevant to molecular and cell biologists. The journal's broad scope ensures that the articles it publishes reach the widest possible audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信