Robust Bi2(Te,Se)3 Thermoelectrics From Large Shrinkage Ratio Extrusion Drives Advanced Peltier Microcooler and Power Generator

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qiang Zhang, Kaikai Pang, Yue Wu, Xuan Li, Dongxiang Lv, Liya Miao, Xiaojian Tan, Haoyang Hu, Jiehua Wu, Li Kong, Xufeng Hou, Baoguo Ren, Guo-Qiang Liu, Jun Jiang
{"title":"Robust Bi2(Te,Se)3 Thermoelectrics From Large Shrinkage Ratio Extrusion Drives Advanced Peltier Microcooler and Power Generator","authors":"Qiang Zhang,&nbsp;Kaikai Pang,&nbsp;Yue Wu,&nbsp;Xuan Li,&nbsp;Dongxiang Lv,&nbsp;Liya Miao,&nbsp;Xiaojian Tan,&nbsp;Haoyang Hu,&nbsp;Jiehua Wu,&nbsp;Li Kong,&nbsp;Xufeng Hou,&nbsp;Baoguo Ren,&nbsp;Guo-Qiang Liu,&nbsp;Jun Jiang","doi":"10.1002/adfm.202500731","DOIUrl":null,"url":null,"abstract":"<p>The “Barrel Effect” of <i>n</i>-type Bi<sub>2</sub>Te<sub>3</sub> materials have always been the biggest obstacle to expanding thermoelectric commercial applications. This work develops an industrial-scale large shrinkage ratio extrusion method that synchronously coordinates appropriate texturing and modifies atomic defects, as well as micro and nanostructures, prompting simultaneous gains in rods with a diameter of 30 mm increases to ≈1.20 at 325 kelvin, with flexural and compressive strengths significantly improve to 77.7 and 192.4 MPa, respectively. Successfully fabricated Peltier microcoolers (1 × 3 mm<sup>2</sup> cross-section) exhibit a competitive maximum cooling temperature difference of 90.6 kelvin at a hot-side temperature of 348 kelvin. A designed and integrated 17-by-17 power generator demonstrates a high conversion efficiency of 7% under a 200-kelvin temperature gradient and highlights operational stability. These achievements hold great potential for advancing applications in compact solid-state cooling and low-grade waste heat recovery.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 32","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202500731","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The “Barrel Effect” of n-type Bi2Te3 materials have always been the biggest obstacle to expanding thermoelectric commercial applications. This work develops an industrial-scale large shrinkage ratio extrusion method that synchronously coordinates appropriate texturing and modifies atomic defects, as well as micro and nanostructures, prompting simultaneous gains in rods with a diameter of 30 mm increases to ≈1.20 at 325 kelvin, with flexural and compressive strengths significantly improve to 77.7 and 192.4 MPa, respectively. Successfully fabricated Peltier microcoolers (1 × 3 mm2 cross-section) exhibit a competitive maximum cooling temperature difference of 90.6 kelvin at a hot-side temperature of 348 kelvin. A designed and integrated 17-by-17 power generator demonstrates a high conversion efficiency of 7% under a 200-kelvin temperature gradient and highlights operational stability. These achievements hold great potential for advancing applications in compact solid-state cooling and low-grade waste heat recovery.

Abstract Image

Abstract Image

强大的Bi2(Te,Se)3热电从大收缩比挤出驱动先进的Peltier微冷却器和发电机
n型Bi2Te3材料的“桶效应”一直是扩大热电商业应用的最大障碍。本研究开发了一种工业规模的大收缩比挤压方法,该方法可以同步协调适当的纹理和修改原子缺陷,以及微观和纳米结构,使直径为30 mm的棒材在325开尔文时的同时增益增加到≈1.20,弯曲和抗压强度分别显著提高到77.7和192.4 MPa。成功制造的Peltier微冷却器(1 × 3 mm2横截面)在热侧温度为348开尔文时,最大冷却温差为90.6开尔文。设计和集成的17 × 17发电机在200开尔文温度梯度下显示出7%的高转换效率,并突出了运行稳定性。这些成果在推进紧凑固态冷却和低品位废热回收方面的应用方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信